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Abstract

JONATHAN VINCENT TOUPS: Representation and selection of
time-varying signals by single cortical neurons.

(Under the direction of Paul Tiesinga.)

I present a theoretical effort to develop tools and statistical analysis of neural re-

sponses to repeated presentations of identical time varying stimuli. Such experiments

may produce responses characterized by regions of elevated firing separated by longer

periods of low firing rate referred to as “events.” Unlike previous methods, which find

events based on a firing rate threshold, I present a four parameter, reproducible method

which first discovers “spike patterns” (subsets of trials with similar spike timing) using

unsupervised clustering and a spike train metric, followed by the use of an interspike

interval threshold to detect events. I present results from in vitro data showing that

the precision of the resulting events is higher than that estimated using a firing rate

threshold technique; events within a single spike pattern may be very precise, even if

they overlap in time across spike patterns. This analysis provides a model of neural

activity which preserves information about spike patterns which can be used to gen-

eralize single unit recordings to multi-unit activity. I also present a statistical test to

characterize whether events are correlated with one another. A new insight provided

is that the choice of time scale for the metric space analysis should maximize the in-

formation in the distances between spike trains, regardless of specific timescales in the

data. The event finding procedure works well for data sets with more than 20 trials,

and with events which are well separated within spike patterns.

I also present a comparison of two methods for selecting one of two stimuli present

in the receptive field of a single cortical neuron. In the first, clustering of excitatory
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and inhibitory synaptic input in the dendrites of a model layer 2/3 pyramidal cell is

demonstrated to be insignificant in the selection of signals by unbalancing inhibition.

In the second case, phase locking of excitatory inputs at two different phases of a local

γ oscillation is demonstrated to produce statistically significant stimulus selection in

output firing rate.

Together these results contribute to the analysis, representation and understanding

of neural responses to time-varying signals.
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Chapter 1

Introduction

The brain is constantly presented with a world in motion. Not only must an organism

make sense of this vast tumult of information, it must do so dynamically, selecting as-

pects of the sensory universe to devote resources to depending on its current state and

the demands of the world. Neuroscience has made great strides in understanding the

basic principles of neural computation which allow organisms to take input, from the

retina, for instance, and extract meaningful aspects of visual space from that raw data,

such as orientation, shape, and other features. However, most insights into neural com-

putation have been derived from experiments where the stimuli have simple temporal

and spatial characteristics. Realistically, brains must be able to process and attend to

signals with rich temporal structure, but responses to this kind of stimuli are difficult

to study.

This dissertation presents several results structured around the theme of investi-

gating neural responses to time-varying signals. Chapter 2 presents neurobiological

background material which provides context for the subsequent investigations. Basic

anatomical terms, aspects of neural modeling, and the origins of stimulus selectivity

and attention are discussed. Chapter 3 presents a method for investigating the kinds

of responses neurons may make to rich, time varying signals. A mostly-unsupervised



method to find so-called “spike patterns,” interesting features of neural responses to

repeated presentations of signals with temporal structure, is described and applied to in

vitro data. Chapter 4 applies these methods to the question of simultaneously encoding

information about the amplitude and structure of a time-varying signal. We show that

the amplitude of a signal can be encoded in the distribution of spike patterns, and,

as a consequence of this fact, regions in the “response space” which have the highest

density of possible patterns (termed “bifurcation points”) can encode amplitude with

the highest fidelity.

Chapter 5 describes two methods for dynamically selecting one of multiple inputs

into a neuron. In the first case, the question of whether the clustering of synapses into

specific sub-domains of the dendrites of pyramidal cells might allow for a possible means

of stimulus selection is investigated. By adjusting inhibitory and excitatory activity to

specific locations in the dendrites, we attempt to dynamically select which excitatory

signal is represented in the neurons output. We find that in our model, the location

of synapses is not significantly important in the time-varying case, although there are

significant differences between different location strategies in the constant firing rate

regime which indicate further areas of research. In the second case, the relationship

between inhibitory oscillations, which are a ubiquitous feature in the brain, and stimulus

selection. Signals are again represented as excitatory synaptic activity in the model, but

each signal’s activity is tightly locked to a particular phase with respect to a reference,

inhibitory oscillation. We report that by adjusting the phases of incoming signals, the

output of the neuron can be strongly modulated to reflect, or neglect, the temporal

structure of those signals.

Finally, Chapter 6 discusses the significance of these results in terms of current and

future research.
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Chapter 2

Neurobiological Background

2.1 General Background

2.1.1 Neurons and Synapses

The human brain is made of around 160 billion cells, divided roughly in half between

glial cells and “proper” neurons, with glial cells slightly outnumbering neurons (John-

ston and Wu, 1995). Glial cells are usually thought of as taking a “support” role

in neural computations (for instance, maintaining the correct biochemistry in the in-

tercellular medium). Since they are not electrically active on short time scales, they

are usually neglected when considering problems of neural computation (Fields and

Stevens-Graham, 2002). The majority of the rest of the cells in the brain are neurons

(≈ 1012). Neurons are electrically active cells with a distinctive morphology apparently

adapted to the task of processing and transmitting information. Although neurons come

in a large variety of shapes, sizes, morphologies and electrophysiologies (Markram et al.,

2004; Larkum et al., 1999; Migliore et al., 1995; Golding et al., 1999; Schaefer et al.,

2007), they nevertheless share enough in common that a single description can convey

shared features. Most, but not all, neurons share the features illustrated in Figure 2.1:

a dendritic arbor (usually an extensively branched structure made of cell membrane



attached to the cell body), a soma (the part of the cell most like other cells in the

body) and an axon (usually a long, thin extrusion of cell membrane which may branch

many times before forming synapses onto other cells). From the simplest perspective,

information can be visualized as flowing from the dendrites, towards the soma, and

down the axon, as indicated by the arrow in Figure 2.1.

Figure 2.1: A Schematic Neuron. Neurons are electrically active cells that integrate
input from other neurons with their dendrites, generate spikes, depending on the input,
at the soma, and transmit those spikes to other neurons (or muscle tissue) along their
axons. They are the basic computational unit of the brain.

Neurons are electrically active cells. Their membranes contain specialized molecular

pores, pumps, and channels (see Figure 2.2) which allow the neuron’s transmembrane

voltage (also called the membrane potential or voltage) to rapidly change in response to

signals from other neurons, and for those rapid changes to propagate from one location

in the cell to another. The physics of these transmembrane currents are discussed

at greater length in Section 2.2. For the moment, it is sufficient to observe that such

transmembrane currents allow the neuron to send signals, called action potentials, from

their somas to their axons, where they are transmitted to other neurons.

Neurons connect to one another at electro-chemical junctions called synapses (John-

ston and Wu, 1995). Synapses can be either entirely electrical in nature (called gap

4



Figure 2.2: Ionic channels in the membrane of the neuron selectively pass certain ions
in a voltage dependent way. The cell membrane is illustrated with a single ion channel.
Conceptually, a charged gating protein acts as a molecular switch, closing or opening
the channel as it is pulled by the trans-membrane electric field. Modeling the average
behavior of many such channels underlies conductance based modeling.

junctions) or chemical in nature (usually referred to as simply “synapses” unless there

is a special need to distinguish them from gap junctions - when there is, the prefix

“chemical” is usually added). Gap junctions are places where two cells literally make

electrical contact, allowing ions to flow directly between the two cells. At chemical

synapses, the “signal” propagating between the two cells is mediated chemically. Al-

though both gap-junctions and chemical synapses are important in the brain, chemical

synapses are more relevant to the topics discussed in this dissertation because so-called

feed forward and top down inputs are mediated by them. The biophysics of synapses

and the simulation thereof are discussed in Subsection 2.2.4.

Like neurons themselves, chemical synapses (hereafter merely synapses) come in

a large variety of types, but can be described by a single set of features. Figure 2.3

illustrates a schematic, generic synapse. The presynaptic cell approaches very near the

post-synaptic cell, creating a synaptic cleft around 20 nm in width. The presynaptic

terminal contains, near the cell wall, vesicles of neurotransmitter. The arrival of an

5



action potential causes these to merge with the cell membrane and dump their contents

into the synaptic cleft. Receptors in the membrane of the post-synaptic cell detect

the presence of these neurotransmitters and directly or indirectly cause conductance

changes in the post-synaptic neuron, which in turn causes currents to flow, changing

the voltage across the membrane of the post-synaptic neuron.

Figure 2.3: Synapses convert the electrical action potential into a chemical signal and
back again. The arrival of the action potential at the synaptic junction causes the
release of neurotransmitters into the synaptic cleft. These bind to receptors in the
postsynaptic neuron’s membrane, causing changes in conductance which can depolarize
(increase) or hyperpolarize (decrease) the membrane, providing information about the
presynaptic neuron to the dendrites of the postsynaptic cell.

Neurons are themselves broadly, if imperfectly, divisible into excitatory neurons and

inhibitory types. These names refer to the effect the synapses formed by a presynaptic

neuron have on postsynaptic cells when spikes arrive. As it happens, all the synapses

a given cell makes onto postsynaptic neurons are either excitatory or inhibitory (this

is known as Dale’s Principle (Eccles, 1976)). No neurons exist which make synapses of

both types on postsynaptic neurons. Excitatory synapses generally cause the membrane

potential to increase (depolarize) in the postsynaptic neuron (they are also sometimes

6



called “asymmetric” because of their morphologies). Inhibitory synapses (sometimes

called “symmetric”) generally cause a postsynaptic cell’s membrane potential to de-

crease (hyperpolarize) (DeFelipe and Farinas, 1992). Within these two broad categories,

synapses can fall into a variety of other groups, depending on the neurotransmitter used

and the morphology of the junction. In brain areas where high fidelity and accurate

timing are needed (such in the auditory system), the postsynaptic neuron’s synaptic

bouton is often enclosed almost entirely in an extrusion of the presynaptic cell (Satzler

et al., 2002; Joris et al., 2004). In this dissertation, simple model synapses are used

and the details of neurotransmitters and synaptic morphology are abstracted.

The dichotomy between excitatory and inhibitory neuron types is strongly associ-

ated with another important distinction between neurons: that of interneuron versus

non-interneuron cell types (described below). The brain is not one undifferentiated

lump of neurons - it is divided into functional sub-units at different size scales. The

brain at large is divided between cortical and sub-cortical areas, each of which is di-

vided into areas which perform a common function, and are differentiated by different

cell types and distributions of cell types and connections. A repeated organizational

principle in complex nervous system is that of layers and mini-columns (Mountcastle,

1997). The mammalian cortex is usually conceptualized as having six layers. The

generally accepted view of cortical computation has “columns” of neurons in a given

cortical area interacting with both excitatory and inhibitory connections to perform a

computation, the output of which is then passed via excitatory connections to another

cortical area for further analysis.

Interneurons are neuron types which are limited in their connectivity to a single cor-

tical area. They are usually inhibitory and smooth, although exceptions to both char-

acterizations exist. Connections between cortical areas are generally made by varieties

of pyramidal cells, so-called because of the morphology of their cell body. Pyramidal
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cells are always excitatory and make both local and non-local connections.

There are estimated to be at around 10,000 “classes” of neurons in vertebrates

(Johnston and Wu, 1995), although there is no universally accepted method for cat-

egorizing them. Despite this bewildering variability in form and function, some basic

principles of neural computation have been described. After describing some basic

anatomy of the nervous system, some of these principles will be reviewed (see Subsec-

tion 2.1.3).

2.1.2 Gross Anatomy

For readers without a background in biology, it is useful to establish a few common

anatomical terms with respect to describing brain anatomy. Figure 2.4 illustrates these

basic terms. Figure 2.4A shows the head and brain in profile. Because the head in

humans is almost perpendicular to the line of the back (in contrast to quadrupeds),

some anatomical terms can be slightly misleading. Dorsal means along the top of the

head, while ventral indicates the opposite. Anterior means towards the nose, while

posterior indicates towards the back of the head. Occasionally the synonyms rostral

and caudal are used, respectively, to describe the same directions. Conveniently, left

and right retain their meaning when discussing anatomy, as illustrated in the top view

of the brain shown in Figure 2.4B. When referring to neurons, additional terms are

useful. Proximal means close to the cell body while distal means the opposite. To

describe locations along the axis of the neuron, the word basal indicates the side of

the neuron from which the axon emerges, while apical indicates the other direction.

Although the neuron illustrated in Figure 2.4C does not have basal dendrites, it is

nevertheless a common feature in pyramidal cells, and so the location of the axon is

the way to orient oneself to a neuron.

This dissertation is principally concerned neurons in the visual cortex, as attention in
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Figure 2.4: Basic anatomical terms for describing locations in the brain. (A) Dorsal
refers to the top of the brain, ventral to the bottom. Anterior or rostral indicates the
direction towards the nose, while posterior or caudal indicates the back of the brain.
(B) The left and right side of the brain are referred to simply as “left” and “right.”
(C) When referring to neurons, distal means far from the cell body, proximal means
close to it and basal refers to the end of the neuron from which the axon emerges, while
apical indicates the opposite end of the neuron.
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the visual system is well studied due to the location of the visual cortex and the nature of

visual responses there (Koch, 2004b). The occipital lobe (labeled in Figure 2.6) contains

the cortical areas responsible for the processing of low-level visual information. Moving

towards the front of the brain from the occipital cortex, the visual system splits into

ventral and dorsal pathways (Figure 2.5). The ventral pathway is generally associated

with object recognition, while the dorsal pathway is associated with motion planning

and action (Koch, 2004b).

Figure 2.5: Extraction of non-trivial features from visual input begins in the occipital
lobe’s visual cortex. From there, visual processing splits into two pathways, the ventral,
running along the bottom of the brain, and the dorsal, running along the top. Each
pathway is hypothesized to be responsible for different aspects of the perception and
utilization of visual information (Koch, 2004b). The ventral stream is involved in object
recognition - as we move from V1 to V2 to V4, neurons become responsive to more
and more complex objects. Further into the ventral pathway, neurons which respond
to faces and complex objects are found, for instance, in area IT (Mesulam, 1998). The
dorsal pathway is involved in motion planning, and neurons in this pathway respond
to location and motion of objects in the visual world. (This brain’s folds have been
simplified for visual clarity).

The ventral, object recognition pathway is better understood than many brain areas

because it is relatively easy to access with electrodes. It has also proved easy to find

simple stimuli which selectively activate the neurons there. As a consequence, the visual

10



Figure 2.6: Gross anatomical divisions of the brain. Although each lobe is too large
to associate with a single function, each is traditionally ascribed a general operational
area. The occipital lobe is associated with vision, the parietal lobe with some kinds of
abstract thought, the frontal lobe with planning, and the temporal lobe with music. The
cerebellum is associated with muscle control and balance, and the brainstem connects
the brain to the rest of the nervous system and controls some reflexes (reviewed in
Diamond et al. (1985), Chapter 1).

system forms the conceptual background to this study.

2.1.3 Origins of Feature Selectivity in the Ventral Visual Path-

way

Some neurons can be thought of as having a stimulus preference. For instance, while

recording from a neuron in V1, one may find that it responds only when a bar of a

particular orientation is placed in a particular location in space, relative to the fixation

point of the eyes. This behavior was first reported by Hubel and Wiesel (1962) in

the visual cortex of cats. The orientation and spatial location to which the neuron

responds is sometimes called its stimulus preference, and we may say that the neuron

is “orientation selective”. The spatial component of a visual system neuron’s stimulus

preference is often referred to as its receptive field, and its stimulus preference is often

described neglecting the spatial location of the receptive field. A neuron might be said,

for instance, to have a stimulus preference for bars oriented at 45◦ without specifying

at which position in space the oriented bar needs to be. Some authors include all

aspects of the stimulus which have an effect on the response of the neuron in the term
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“receptive field,” but for simplicity and clarity, in this dissertation, receptive field will

mean the spatial location and extent in which an object must be to produce a response.

The stimulus preference will mean the properties that produce a response when present

in the receptive field.

With this information, the progress of information though the early visual system

and into the ventral visual pathway can be described. A complete, if casual, introduc-

tion to the visual system can be found in Koch (2004b) Chapters 3-4. Since the intent

here is to produce an understanding of the origins of stimulus selectivity in the visual

cortex, a simpler introduction which highlights the most relevant aspects of the visual

system will be more appropriate.

Visual information enters the brain at the retina, which is a 2D surface of photore-

ceptive neurons and support cells located on the back, inside surface of the eyeball.

The density of neurons is not constant on the retina (most notably the so-called fovea

at the center of the retina has a much higher density of photoreceptive cells than other

parts of the retina). A crucial feature of the visual system, however, is apparent in the

retina: nearby neurons respond to nearby portions of the visual space. This retinotopic

organization is preserved throughout the visual system, so that two neurons which are

near one another physically are likely to have receptive field centers which are also

nearby. A gross but functional simplification is that each retinal neuron responds to

the presence of either light or darkness in its receptive field and sends this information

to the rest of the visual system (Figure 2.7).

The retinal neurons encode information about the visual scene in spike trains (se-

quences of spikes), which travel down axons to the lateral geniculate nucleus (LGN)

(Figure 2.5), located in the thalamus, situated roughly “on top” of the brainstem, be-

neath the cortex (Figure 2.6). Although in practice the LGN’s role is not completely

understood, for our purposes it is sufficient to note that cells projecting from the LGN
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Figure 2.7: The retina reproduces spatial relationships in its pattern of activity. In this
schematic representation of a visual scene and the retina, two shapes are reproduced in
the response of the retinal cells (indicated by color). Nearby areas of space occupied by
the two stimuli are represented by neighboring neurons on the retina. A real retina has
large variations in the density of retinal neurons and reflects an inverted representation
of space, but the relationship between neighboring points in space and neighboring
neurons is retained.
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to V1, the next stop in the visual system, have similar receptive fields and stimulus pref-

erences as retinal neurons (Koch, 2004b). That is, LGN cells respond to the presence

of light or dark spots in their receptive field (Koch, 2004b, Chapter 3). The retinotopic

map is preserved.

Neuron’s in V1 begin to show the first signs of “interesting” stimulus preferences

in that they respond to the presence of specific orientations in their receptive fields.

The origins of orientation selectivity are not fully understood in V1, however, several

models provide sufficient explanatory power to shed substantial light on the mecha-

nisms which are at work (Teich and Qian, 2006). Models fall on an axis defined by the

degree to which feed-forward and recurrent connections are used to create orientation

selectivity. Hubel and Wiesel (1962) originally proposed an entirely feed-forward model

to explain the origins of orientation selectivity. In such a model, a neuron which has

a particular orientation preference receives inputs from a line of neurons along that

orientation (Figure 2.8). When neurons have identical receptive field centers but dif-

ferent orientations, there is some overlap in their inputs. For instance, if the blue LGN

neurons in Figure 2.8 are activated, then the red V1 neuron receives a small amount of

input, despite the fact that it is selective for the opposite orientation. A large thresh-

old for activation ensures that the red neuron remains inactive under such stimulation,

and only responds when a large number of its presynaptic neurons are activated, as

they would be if a visual stimulus triggered all the red LGN cells. While all models of

orientation selectivity presume some degree of selectivity in feed-forward connections

(and in fact, there is evidence for this connectivity from anatomical studies (Chapman

et al., 1991; Tanaka, 1983; Reid and Alonso, 1995)), pure feed-forward models appear

to be untenable due to their inability to reproduce the degree and manner of contrast

invariance that experiments have demonstrated (a review of the results in the cat is

Ferster and Miller (2000)).
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Figure 2.8: Orientation selectivity in V1 can be produced by feed-forward connections
from lines of neurons in the LGN. A neuron in V1 which is sensitive to horizontal lines
receives input from the LGN neurons which lie on that line, while other orientation
selective neurons receive inputs from other lines. In this schematic representation,
three neurons receive input from three overlapping sets of LGN neurons. Since the
inputs for two distinct orientations with the same receptive field center must overlap,
the threshold for firing in a pure feed-forward model must be set so that a neuron only
responds when most of its presynaptic cells are activated (Hubel and Wiesel, 1962).
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In order to achieve more realistic responses to contrast variation in orientation

selectivity, inhibitory connections in V1 have to be added to the model. Exactly how the

inhibitory connections are made and what the inputs to the local inhibitory cells look

like can vary from model to model (see Teich and Qian (2006) for a review of models

of orientation selectivity), but the key feature is that orientation selectivity derives

first from feed-forward connections, and then it is refined by competitive interactions

mediated by inhibitory interneurons.

The Somers model (illustrated in Figure 2.9) is one such model. Feed-forward

connections from the LGN provide the initial selectivity for a neuron in the cortex

because they all come from an oriented line. Similar lines in space will also activate

this neuron, except that inhibition (which is more broadly tuned) prevents activation

unless a stimulus with the right orientation is present.

Stimulus selectivity in deeper areas of the primate ventral visual pathway can be

conceptualized by analogy to orientation selectivity. For instance, many V4 neurons

respond to specific angles or curvatures in their receptive fields (Pasupathy and Con-

nor, 1999). The inputs to such a neuron might consist of the outputs of orientation

selective neurons in V2 whose spatial relationship and orientation selectivity produce

the appropriate relative angle or curvature. Local inhibition may then be involved in

sharpening or refining the V4 neuron’s stimulus preference.

In summary, a neuron’s stimulus selectivity is produced by selective feed-forward

inputs representing features extracted by the previous cortical area. The selectivity

produced by these connections is then refined by local inhibition. In Chapter 5, we

examine possible ways that such feed-foward inputs into a neuron might be modulated

to bias the response of the cell in favor of one component. Such modulations might

be a part of the mechanism by which brains devote attention to specific inputs while

ignoring others.
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Figure 2.9: Schematic connectivity of the Somers model (adapted from Somers et al.
(1995)). In this model, feed-forward excitatory activity from the LGN stimulates both
pyramidal cells and inhibitory interneurons in the cortex. Input from a line of LGN cells
produces weak orientation selectivity in the cortical pyramidal cells, while inhibition
is activated broadly, refining selectivity by inhibiting less strongly activated pyramidal
cells with similar, but not identical, orientation selectivity.
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2.1.4 Receptive Field Size and Attention

One problem with this view is that receptive field sizes grow quickly as we move deeper

into the ventral visual pathway, starting at .3 degrees or less in the LGN and V1 and

increasing to 4 degrees by V4. Deep into the ventral pathway, in the inferior temporal

cortex (IT), receptive fields can be as large as 25◦ (Desimone and Duncan, 1995).

Large receptive fields pose a problem, however, in that they may be occupied by

multiple stimuli at once. Under many circumstances, an organism is interested in only

a small portion of the visual space or objects with specific features, and wants to ignore

other inputs. How can a neuron with a large receptive field simultaneously respond to

the presence of a stimulus in an attended location, while ignoring another stimulus at

an unattended location within its receptive field? This dissertation examines possible

mechanisms of spatial attention at the scale of a single neuron in V4.

Although we have discussed neural responses in terms of firing rates up to this point,

the brain is replete with oscillatory activity as well (Buzsaki, 2006). Any discussion

of attention should address the relationship between neural activity and ongoing or

stimulus induced oscillatory activity.

Studies of visual attention have demonstrated the brain’s ability to dynamically

effect the responses of neurons to the presence of stimuli in their receptive fields (Fries

et al., 2001, 2008; Taylor et al., 2005). In Fries et al. (2008), macaque monkeys were

trained to respond to a color change in a target stimulus by releasing a lever. A

similar distracter stimulus would also undergo a color change at some point during

the trial. Significant differences in both the firing rate and γ-band synchrony were

observed during these trials depending on whether attention was directed into or out

of the recorded neuron’s receptive field.

Chapter 5 of this dissertation examines a single pyramidal cell receiving multiple

inputs representing different spatial locations. The possible roles of both inhibitory γ
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oscillations and location specificity of feed-forward and inhibitory synapses in spatial

attention are examined.
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2.1.5 Precision and Reliability of Neural Responses

Up to this point, the activity of the brain has been described in terms of the firing rates

of neurons. Stimulus preference, for instance, is measured by showing a neuron a variety

of stimuli and measuring its response over an interval of time to each, calculating the

total firing rate, and finding the stimulus which produces the most spikes. In nature,

it is uncommon for an animal to maintain a visual fixation at some point in space,

and then see an isolated white bar which appears in a field of black, maintains its

orientation for 500-1000 ms, and vanishes again. During normal behavior humans and

other primates almost never fixate for longer than 200 ms - their eyes are instead

constantly making rapid movements called saccades, causing the image falling on any

particular area of the retina to rapidly vary (Koch, 2004b).

Responses to constant stimulation like those used in many types of experiments often

have high variability in both the exact timing of spikes and their total number. This

has lead neuroscientists to hypothesize that the cortex is a fundamentally noisy place

where neurons are neither precise nor reliable in their spiking and where large numbers

of neurons must be averaged over, in some sense, to extract meaningful information

about the sensory universe (Shadlen and Newsome, 1998). Until recently, it has been

impossible to record from many neurons simultaneously, and so multiple recordings

of one neuron responding to the same repeated stimulus presentation were used as a

surrogate.

Contrary to this view, some experiments have shown that when stimulated with

time varying signals, cortical neurons can respond with high precision and reliability,

both in vivo and in vitro (Mainen and Sejnowski, 1995, 1996; Reinagel and Reid, 2002).

In Figure 2.10, the responses of a pyramidal cell in vitro are plotted in response to a

constant depolarizing current (A) and a “frozen noise” stimulus (a temporally varying
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signal with exactly the same structure on each trial) (B). In response to a constant depo-

larization (A), spikes rapidly become unsynchronized (within about 500 ms), while the

responses to the “frozen noise” (B) stay synchronized for the duration of the stimulus.

Figure 2.10: Neurons respond with high precision to time varying signals (Mainen
and Sejnowski, 1995). (A) When stimulated with a constant depolarizing current, this
cortical pyramidal cell produces highly variable responses, in terms of spike timing. (B)
In contrast, the response of the same neuron to a temporally varying signal is precise
and reliable in both spike timing and firing rate.

The high precision of neurons in response to time varying stimuli opens up the

possibility that information might be encoded in either the total firing rate of a neuron

or its exact spike times.

Neurons firing with high precision can be demonstrated to produce a small number

of distinct patterns of activity in response to repeated stimulation by the same signal

under certain circumstances (Tiesinga and Toups, 2005). These patterns have been

observed in experiment (Fellous et al., 2004), but a full development of mechanisms to

detect and characterize them has not been presented. This dissertation examines some

ways of accomplishing this task.

Chapters 3 and 4 examine the implications of precise spike timing for coding both the

21



temporal variations in a stimulus and contrast, and discuss algorithms to automatically

extract meaningful patterns from precise data. A statistical measure of the relevance

of spike patterns to the neural code is also examined.

2.1.6 Oscillations

Oscillations are a persistent and ubiquitous aspect of the nervous system (Buzsaki and

Draguhn, 2004). Figure 2.11, from Buzsaki and Draguhn (2004) shows the presence

of oscillations at various distinct frequencies in mouse (A), rat (B) and human (C)

subjects. The hypothetical role of the γ oscillation in particular is addressed in this

dissertation (see Section 5.4).

2.2 Neural Modeling

2.2.1 Integrate and Fire Neurons

Among the simplest methods for modeling the behavior of neurons is the “leaky inte-

grate and fire” (LIF) model (Figure 2.12). The model reproduces the intuition that a

neuron is accumulating inputs from its dendrites and summing them up until a thresh-

old is reached, upon which it emits a spike, resets, and the process starts anew. The

integrative part of the neuron is simulated as a capacitance, which accumulates charge

(and therefore the voltage across the capacitance increases). The “leaky” aspect of the

model refers to the fact that there is a transmembrane leakage, RL which slowly drains

the charge off the “membrane.” This reflects the observation that old inputs are less

important than new ones (or, equivalently, that the neuron tends to return to a “rest-

ing” state after a period of time) (Koch, 2004a, Chapter 1), so that the same amount

of input over a long time may not produce a spike, even though it can produce one if it

is received within a short time period. In a real neuron, an “action potential,” or spike,
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Figure 2.11: The Power spectrum of the brain (Buzsaki and Draguhn, 2004). (A)
The power spectrum from a sleeping mouse shows peaks at various distinct oscillation
frequencies. (B) Different oscillation regimes and their names in the rat. (C) The
power spectrum for a sleeping human (taken from an electroencephalographical (EEG)
recording) shows similar peaks in frequency corresponding to different oscillations. The
large difference between A and C is due to a different scale and because power spectrum
in A was whitened by having the log-trend subtracted.
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is a non-linear process due to the coordinated action of multiple active conductances

across the neural membrane. It manifests itself as a rapid rise and fall in the mem-

brane potential which results in the membrane returning to near the resting membrane

potential (or below it). In the LIF neuron this is represented by an ad-hoc “spiking

mechanism” which emits a spike and resets the membrane potential after it passes a

set threshold. The LIF neuron is an RC circuit with time constant τ = RmCm and is

often simulated with a voltage range of [0 1], (corresponding to removing the battery

in Figure 2.12, making the resting membrane potential zero, and then adjusting RmCm

to give the desired time constant).

Figure 2.12: The leaky integrate-and-fire (LIF) neuron. This abstract model of a neuron
contains only a membrane resistance and capacitance, an abstract representation of
input as a current source, and an ad-hoc “spiking mechanism” which issues a “spike”
and then resets the membrane potential to zero.

When the input is conceptualized as coming in bursts from multiple sources, in

analogy with synaptic input in a real neuron, the LIF neuron can be conceptualized

as a coincidence detector if it has a short time constant: many inputs must arrive in

a short interval to trigger a spike. LIF neurons with long time constants are more like
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accumulators - their responses reflect the presence of a certain level of activity over a

long period (see Section 3.4).

In real neurons a spike is often followed by a period during which the neuron is

unable to fire again - a refractory period. LIF neurons are sometimes given an artificial

refractory period by simpling preventing the voltage from changing for a length of time

after a spike or by resetting the membrane potential to a value lower than the resting

potential, making a spike immediately after firing relatively unlikely.

2.2.2 Hodgkin-Huxley type models

The Hodgkin-Huxley (HH) approach for modeling the behavior of a neuron’s membrane

was originally applied to the experimentally tractable giant squid axon (Hodgkin et al.,

1952). Like the simple LIF model, the HH method begins with the conceptualization of

a neuron as a capacitive membrane through which charge flows. Rather than modeling

only input and leakage currents, and simulating the spike generating mechanism as an

instantaneous reset of the membrane potential, HH, or conductance based models, as

they are also called, attempt to characterize the voltage gated ion channels in a cell’s

membrane and simulate their behavior (averaged over the many channels of a given

type in the membrane) as a function of time. No ad-hoc spike generating mechanism

is necessary - a conductance based model with the proper conductances will spike by

virtue of its voltage dependent conductances.

We first concern ourselves with modeling a single small patch of membrane. A neu-

ron is electronically compact when the membrane potential does not vary much across

the surface of the neuron. Under these circumstances, a “single compartment” model

(in which only a patch of the membrane is simulated) may be sufficiently accurate.

For neurons with a large and extensive dendrites compartmental modeling is needed

25



(Carnevale and Hines, 2006, Chapters 2, 3). However, since such compartmental mod-

eling begins with the equations for modeling a small patch of membrane, we discuss

that process here first. In a subsequent Section, the generalizations necessary to model

a spatially extended neuron will be described.

Conservation of charge forms the basis for modeling the membrane potential, since

the capacitive part of the conservation law gives an expression for the time derivative

of the membrane potential dV
dt

:

IC + Iother = 0,

Cm
dV

dt
= −Iother.

We proceed by writing expressions (possibly dependent on voltage) for the currents

entering and exiting the membrane. The general form of a membrane conductance is:

I = g(V − E),

where g is the conductance of the “channel” being modeled and E is the reversal

potential of the channel in question. The value of g is, in general, a time varying

function of V . A simple case in which it is not is the leak conductance:
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IL = gL(V − EL),

which represents the passive leakage of ions across the membrane. A model neuron with

only a leak conductance will settle from any initial condition to the reversal potential

of the leak conductance, where dV
dt

= 0. The dynamics of such a patch of membrane

is identical to that of the sub-threshold behavior of the LIF neuron with gL = 1
RL

and

the battery determining the neuron’s resting potential set to EL.

The reversal potential of an ionic channel can be calculated by finding the potential

for which the ionic flux across the membrane due to the concentration gradient of the

ion in question equals that due to the electric field across the membrane. In terms of

the concentrations inside and outside the membrane ([C]in and [C]out) and the charge

of the ion, z, the reversal potential is (Johnston and Wu, 1995):

E =
RT

zF
ln(

[C]out

[C]in
).

The HH paper provided a model for two additional channels. These are sufficient to

produce an action potential followed by a refractory period. More complex models

include more conductances, but the technique is the same.

Figure 2.13 illustrates the basic set up of a conductance based model (in this case,

the original HH model is shown). For this model, the equation for the derivative of the

membrane potential is:
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Figure 2.13: The HH model is an electronic circuit with a capacitor and voltage-gated-
conductances. (Figure adapted from Johnston and Wu (1995)). The membrane itself
is represented by a simple capacitance Cm while conductances gK and gNa correspond
to potassium and sodium channels in the cell membrane, with associated reversal po-
tentials Ek and ENa. The leakage conductance gL and its associated reversal potential
EL model non-specific, passive conductances across the membrane. Conductance based
modeling generally follows this example, but may use many more conductances of var-
ious types.

−Cm
dV

dt
= IK + INa + IL,

−Cm
dV

dt
= gK(V, t)(V − Ek) + gNa(V, t)(V − ENa) + gL(V − EL), (2.1)

where gK and gNa are also dynamical variables which need to be integrated to find the

time course of V. In the original HH model,

gK(V, t) = n4gK , (2.2)

gNa(V, t) = m3hgNa, (2.3)

where n, m and h are the gating variables, and where gK and gNa are the maximum
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conductances of each channel.

Conceptually, a gating variable models the behavior of a protein in the cell mem-

brane through which ions of a specific species may or may not pass, depending on its

state (Figure 2.2). Gating variables are derived from the assumptions that an indi-

vidual channel will transition from an open to a closed state (or from a closed to an

open state) with a voltage dependent probability β(V ) (α(V )) and that the reaction

governing this transition is first order (Johnston and Wu, 1995). Under these assump-

tions, the rate coefficients α(V ) and β(V ) can be estimated by considering the energy

barrier necessarily overcome to transition from a closed to an open state and vice versa

(Johnston and Wu, 1995).

α(V ) = α0e
−∆G0−δzFV

RT , (2.4)

β(V ) = β0e
(1−δ)zFV

RT , (2.5)

wherein α0 and β0 are constants determined by experiment, −∆G0 is the “height” of

the activation barrier in zero field (this constant is absorbed into β0 in Equation 2.5),

δ is the scaling factor representing the effect of the transmembrane potential on the

activation barrier, R is Boltzmann’s constant, z is the valence of the gated ion, and F

is Faraday’s constant.

If we call the open state y, then the time derivative of the probability for this state

is given by first order kinetics in terms of α and β:

dy

dt
= α(V )(1 − y) − β(V )y. (2.6)

In words, the change in y is the transition probability from the closed state to the
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open state times the probability we are in the closed state, minus the probability we

are in the open state times the probability of transitioning to the closed state. Each

gating variable has α and β functions fit from experimental results. In the case of the

h variable in the HH equations, a transposition of δ and (1− δ) in the expressions for α

and β reflect the fact that the blocking gating variable is inactivated by depolarization.

Conceptually, the HH model imagines that there are four particles governing the

transition of the K channel (Equation 2.2) from closed to open, and so the gating

variable is raised to the fourth power. The Na channel (Equation 2.3) is “transient”,

which means that its state is governed by both a probability of opening and a separate

“blocked” probability. In the HH model this is reflected by the use of two gating

variables, m and h, where m is the “opening” gating variable, and h is the “blocking”

variable. In contrast to the Na, which can become blocked, the K channel is called

“persistent”.

Using these formulas, the expression for the time rate of the change of the membrane

potential can be written in terms of n, m and h and then integrated by an appropriate

numerical integration algorithm. Where single compartment models are used in this

disseration, a fourth order Runge-Kutta algorithm was used to integrate these equations

(Press et al., 1992; Gerald and Wheatley, 1999).

2.2.3 Compartmental Modeling

Neurons are spatially extended objects, and for some purposes it is appropriate to

simulate not just the activity of one piece of membrane, but a whole spatially extended

cell. Doing so efficiently and stably is a complex problem – software packages such as

NEURON (Carnevale and Hines, 2006) and GENESIS (Bower and Beeman, 1998) (the

former of which is used here for modeling compartmental neurons) exist to abstract

away the complexity from the average neuroscientist. However, the basic principles
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behind compartmental modeling will be described here for completeness.

Once again, the neuron is modeled as an electronic circuit and conservation of charge

and Ohm’s law form the basis of model. However, rather than simulating a single patch

of membrane, we simulate a series of joined patches (which may branch at the ends).

Neglecting branching, the circuit for a compartmental model looks like Figure 2.14.

Figure 2.14: Compartmental modeling extends single compartment modeling by con-
necting each segment of membrane via an internal resistance (adapted from Johnston
and Wu (1995)). Each sub-circuit above represents an electronically discrete patch of
membrane (see Figure 2.13), where all the conductances have been visually represented
as a single symbol.

We have already written the expression for gm above. If we discretize the neuron

spatially into segments which should be approximately iso-potential, then the expres-

sion for the current flowing along the inside of the neuron between section k and j is

(Carnevale and Hines, 2006, chap. 3):

ikj =
(vk − vj)

rjk

,

where rjk is the axial resistance between the jth and kth compartment. Here we follow

the convention of Carnevale and Hines (2006), and write ikj instead of Ikj, the lowercase

indicating that ikj is just one of the currents under consideration.
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In general, a section of membrane may be connected to many other sections, so the

total conservation of charge gives for a compartment j gives

(im)jAj =
∑

k

vk − vj

rjk

,

where imj
is the capacitive and ionic current calculated for the single compartment

case. Because single compartment modeling is usually done per unit area of membrane

(the area can be factored out), the factor of Aj scales the per-unit-area current to the

total membrane current. When the situation is that of Figure 2.14, and the section in

question has only two neighbors, to the left and right, and writing out the capacitive

and ionic components of the membrane out directly, the previous equation becomes:

cj
dvj

dt
+ iion(vj, t) =

vj−1 − vj

rj−1,k

−
vj+1 − vj

rj+1,k

.

If the neighboring segments have the same surface area and resistance, this is

cj
dvj

dt
+ iion(vj, t) =

vj−1 − 2vj + vj+1

r × dx
,

Where r is the internal resistance per unit length area squared and dx is the spacing

between sections. If we let dx → 0, then we find

cm
∂v

∂t
+ iion(vj, t) =

1

r

∂2v

∂x2
.

If we multiply by the resistance per unit area of the membrane, then we get the following
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for a uniform segment of neuron without voltage gated channels:

rmcm
∂v

∂t
+ vm(t) = rm

1

r

∂2v

∂x2
,

In order to get a sense for what these values mean, it is useful to write them in terms

of specific membrane capacitances and resistances. That is, the capacitance per unit

area Cm and the resistance-area (for membrane resistance Rm, which scales with the

area) and resistance-length (for the axial resistance Ra, which scales with the diameter

of the section in question, d).

RmCm
∂v

∂t
+ v =

dRm

4Ra

∂2v

∂t2
.

This is the so-called “cable equation.” The cable equation is useful for estimating the

length and time scales of changes in the membrane potential:

τm = RmCm, (2.7)

λ =
1

2
(
dRm

Ra

)
1
2 , (2.8)

where τm is, as before, the time constant of the membrane, and λ is its characteristic

length scale.

These values are in turn useful for selecting temporal and spatial discretization

parameters for numerical modeling. In the presence of channel based conductance

models, it is generally not possible to analytically solve the cable equation. Under

these circumstances, τm provides an upper bound on the simulation time step, and λ
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provides one for the spatial discretization ∆x. Using typical values of Rm, Ra, and Cm

(Johnston and Wu, 1995, Chapter 3):

Cm ≈ 1
µF

cm2
(2.9)

Rm ≈ 10KΩcm2 (2.10)

Ra ≈ .025KΩcm. (2.11)

The membrane time constant can be calculated without reference to the geometric

properties of the of the cell, since the units of area cancel out:

τm = 10ms. (2.12)

We have to provide an estimate for the diameter and area of the membrane in order

to estimate λ. A pyramidal cell in the neocortex might have a axonal diameter of ≈ 5

µm (DeFelipe and Farinas, 1992), so:

λ = 0.022cm. (2.13)

The NEURON environment provides a front end allowing the user to specify directly

the biophysics and morphology of an extended neuron, for which it then constructs the

partial differential equations in time and space which need to be integrated to model

the neuron (Carnevale and Hines, 2006). It also provides tools to statically or adap-

tively estimate the time step and spatial discretization parameters. The environment

automatically calculates the appropriate boundary conditions for terminal sections and
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branches and has a specialized numerical integrator for solving the resulting type of

differential equations (Carnevale and Hines, 2006).

2.2.4 Modeling Synapses

Although synapses come in two broad categories, excitatory and inhibitory, there are a

large variety of synapse types. Electrical synapses, created by gap junctions, are places

where two neurons exchange ions directly, via a passage between the two cells (Johnston

and Wu, 1995). Chemical synapses, on the other hand, transform the electrical impulse

of the action potential in the presynaptic neuron into a neurotransmitter release into

a synaptic cleft. The neurotransmitter then binds to receptors in the post-synaptic

neuron’s membrane, either directly causing the opening of ion channels or triggering

a chemical pathway in the cell which leads to the opening of other channels. Since

feed-forward connections are mediated by chemical synapses in the mammalian cortex

(Johnston and Wu, 1995, chap. 11) hereafter “synapse” alone will indicate “chemical

synapse.”

Among the simplest conductance based models for synaptic activity is the expo-

nential synapse. In this model, the synaptic conductance at a time t is given by the

following differential equation:

dgsyn(t)

dt
= −

gsyn(t)

τsyn

,

where τsyn is the time constant of the synapse, governing the speed at which the con-

ductance decays. The current provided to the neuron by such a synapse is:
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i(t) = gsyn(t, t0)(Vsyn − Esyn),

where Vsyn is the voltage at the post-synaptic site and Esyn is the synaptic reversal

potential. Integration of this synapse numerically proceeds normally except when a

presynaptic spike arrives, at which point gsyn(t, t0,previous) is instantaneously updated

to gsyn(t, t0) + w, where w can be thought of as the strength of the synapse (Carnevale

and Hines, 2006). The time course of the conductance during a period when no spikes

are received is simply:

gsyn(t, t0) = g0e
(t−t0)/τsyn,

where g0 is the conductance at the last received spike time, t0. By adjusting the values

of w, τsyn and Esyn, the synapse can be made to emulate slow, fast, and excitatory or

inhibitory synapses.

Real synapses have a variety of other properties not reproduced by this model, even

apart from the time course of the synaptic conductance. Neurotransmitters may fail

to release in response to an action potential, or release spontaneously (Meir et al.,

1999), and the conductance may have medium or long time scale variations, referred to

as synaptic depression, facilitation or adaptation (Johnston and Wu, 1995, chap. 11).

For the purposes of this dissertation, which examines the response of a neuron over

the course of at most 6 seconds, during which the input is fluctuating, the medium

and long-time scale variations in synaptic weight are neglected. The issue of synaptic

reliability and spontaneous firing is partially dealt with by calibrating the synaptic

properties to produce the desired output firing rate and membrane potential standard
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deviation, adjusting the spike times which drive each synapses (for instance, lowering

the firing rate to reflect synaptic failure).
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Chapter 3

Finding and Validating Spike

Patterns1

3.1 Abstract

Neurons in sensory systems must convey information about the temporal structure of

stimuli. In vitro, single neurons respond precisely and reliably to the repeated injec-

tion of the same fluctuating current, producing regions of elevated firing rate, which

are termed events. Further analysis reveals spike patterns, which can be measured as

trial-to-trial patterns of correlations between spike times (Fellous et al., 2004). Find-

ing events in data with realistic spiking statistics is challenging because events may

overlap. Overlapping events typically belong to different spike patterns. Therefore,

we developed a method for finding spiking events that uses information about which

pattern a trial belongs to. The procedure can be applied to spike trains of the same

neuron across multiple trials to detect and separate responses obtained during different

brain states. The procedure can also be applied to spike trains from multiple simulta-

neously recorded neurons in order to identify volleys of near synchronous activity or to

1with Jean-Marc Fellous, Peter Thomas, Terrence J. Sejnowski and Paul Tiesinga



distinguish between excitatory and inhibitory neurons. The procedure was tested using

artificial data as well as responses recorded in vitro in response to fluctuating current

waveforms.

3.2 Introduction

The question of how information is encoded in the spiking activity of populations

of neurons ranks among the most fundamental in systems neuroscience (Ermentrout

et al., 2008; Tiesinga et al., 2008). A commonly used measure for neural activity

is the firing rate (Hubel and Wiesel, 1962): the number of spikes per second that

the neuron produces, but under some circumstances, cortical neurons produce precise

spike times across repeated stimulation by the same stimulus (Bair and Koch, 1996;

Buracas et al., 1998; Reinagel et al., 1999; Reinagel and Reid, 2000, 2002). These

events are presumably encoding some aspects of the stimulus because they are produced

reliably from trial to trial, and their exact timing depends on the specific stimulus. A

representative example rastergram and histogram obtained from a model is shown in

Figure 3.1A & B. The rastergram is characterized by vertical bands of aligned spike

times, which occur almost on each trial at approximately the same time with respect to

stimulus onset and which correspond to peaks in the histogram. Each such line/peak

is referred to as an event. To better characterize these events, we use measures that

quantify the likelihood of occurrence of a spike during an event (reliability) and the

precision of this spike when it occurs (precision).

Algorithms have been proposed to determine events (Mainen and Sejnowski, 1995;

Tiesinga et al., 2002), but they often fail to separate overlapping events (Figure 3.1B,

double-headed arrow). We hypothesize here that this separation can be achieved by

taking into account the spiking history, because the refractory period and afterhyper-

polarization currents lead to correlations in the form of spike patterns. An example
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Figure 3.1: Responses can conceal patterns which have high precision and reliability.
(A) A rastergram where each tick represents a spike recorded on a given trial, and trials
are indexed on the y-axis. (B) “Events” in the rastergram can have precision (inverse of
the event standard deviation) and reliability (the probability of a spike occurring during
the event, and the area underneath the portion of the firing rate curve corresponding
to the event).. (C) In the presence of spike patterns, however, estimating these values
can be complicated because events overlap.

with two spike patterns is shown in Figure 3.1C. Although the events were overlapping

when the histogram was calculated across all trials (Figure 3.1B, double-headed arrow),

they were clearly non-overlapping when trials were re-ordered according to the spike

pattern they belonged to (Figure 3.1C). Using spike patterns makes the procedure more

powerful, but also more computationally expensive because it involves additional steps:

spike patterns have to be detected and events common to multiple patterns have to

be merged. We introduce heuristics for the event-based analysis that reduce the com-

putational load and that consequently better allow for an automatic analysis of large

volumes of spike train data.

Using this method across trials, events are characterized by their time of occurrence,

their precision and their reliability. In the following we will use precision and jitter

interchangeably to refer to the temporal resolution of spike times. Numerically, the

precision is equal to one over the jitter. An advantage of the event-based analysis is
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that it does not rely on fitting a specific parametric model for neural dynamics (Jolivet

et al., 2004, 2006; Keat et al., 2001; Pillow et al., 2005), rather it models the data

directly.

The method was applied to data we recorded in vitro from layer 5 cortical neurons

driven by a fluctuating current waveform with an amplitude that was varied system-

atically. The neurons locked to the current drive, which means that they produced

events at specific times relative to stimulus onset. We find that spike trains change

with amplitude such that the information about the stimulus time course is preserved.

Hence, the information about the amplitude is implicitly encoded in the trial-to-trial

variability. Specifically, we found that the probability of occurrence of spike patterns

varied as a function of amplitude.

3.3 Experimental procedures

3.3.1 General experimental procedures

The voltage response of cortical neurons was measured in a rat slice preparation as

described previously (Fellous et al., 2001). The Salk Institute Animal Care and Use

Committee approved protocols for these experiments; the procedures conform to USDA

regulations and NIH guidelines for humane care and use of laboratory animals. Briefly,

coronal slices of rat pre-limbic and infra limbic areas of prefrontal cortex were obtained

from 2 to 4 weeks old Sprague-Dawley rats. Rats were anesthetized with isoflurane

and decapitated. Their brains were removed and cut into 350 µm thick slices on a

Vibratome 1000 (EB Sciences, Agawam, Mass.). Slices were then transferred to a sub-

merged chamber containing standard artificial cerebrospinal fluid (ACSF, mM: NaCl,

125; NaH2CO3, 25; D-glucose, 10; KCl, 2.5; CaCl2, 2; MgCl2, 1.3; NaH2PO4, 1.25) satu-

rated with 95% O2 / 5% CO2, at room temperature. Whole cell patch clamp recordings

41



were achieved using glass electrodes containing (4-10 MΩ: µM: KmeSO4, 140; Hepes,

10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-GTP, 0.3; Phosphocreatine, 14). Patch-

clamp was performed under visual control at 30-32 ◦C. In most experiments Lucifer

Yellow (RBI, 0.4%) or Biocytin (Sigma, 0.5%) was added to the internal solution for

morphological identification. In all experiments, synaptic transmission was blocked by

D-2-amino-5-phosphonovaleric acid (D-APV; 50 µM), 6,7-dinitroquinoxaline-2,3,dione

(DNQX;10 µM), and biccuculine methiodide (Bicc; 20 µM). All drugs were obtained

from RBI or Sigma, freshly prepared in ACSF and bath applied. Data were acquired

with Labview 5.0 and a PCI-16-E1 data acquisition board (National Instrument, Austin

Tex.) at 10 kHz, and analyzed with MATLAB (The Mathworks).

3.3.2 Stimulus generation and experimental design

To test the event finding method we used data collected to study the effect of varying

the amplitude and offset of a repeated frozen noise stimulus. For all experiments the

same frozen noise waveform was used. A white noise waveform (sampling rate 10 kHz,

with samples uniformly distributed on the unit interval) was generated using the matlab

function rand with the state of the random number generator set to zero. It was twice

filtered using the matlab routine filter. First, we applied a low-pass filter with a =[1

-0.99] and b = 1. Second, we performed a 50-sample (5 ms) running average (a = 1,

b has fifty elements equal to 1/50). The first 500 samples (i.e. 50 ms) were discarded

as a transient and the resulting waveform was centered around zero by subtracting the

mean and normalized to have unit variance by dividing by the standard deviation, then

an offset was added. Depending on the cell and the quality of the seal, the waveform

was multiplied by a factor representing the maximum amplitude. Waveforms with

fractional amplitudes from zero to one were presented to the cell. The characteristics

of the experimental data set is listed in Table 3.1. Trials were separated by at least 15
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seconds of zero current, to let the membrane return to its resting state. Throughout the

experiment, a few hyperpolarizing pulses were injected to monitor the access resistance

of the preparation. These pulses were clearly separated from other stimuli.

3.3.3 General procedures

Spike times were detected from recorded voltage traces as the time the membrane

potential crossed 0 mV from below. The firing rate was the number of spikes recorded

during a trial, averaged across all similar trials and normalized by the duration of the

trial in seconds.

In the rastergram, each row represented a spike train from a different trial. Each

spike is represented as a tick or a dot, with the x-ordinate being the spike time and

the y-ordinate being the trial number. Often we group trials together based on the

stimulus amplitude or re-order trials based on which pattern they belong too. This is

indicated in the corresponding figure caption.

The spike time histogram is an estimate for the time-varying firing rate. It was

obtained by dividing the time range of a trial into bins (typically 1 or 2 ms wide) and

counting the number of spikes that fell in each bin across all trials. The bin count was

normalized by the number of trials and by the bin width in seconds. The latter was

to ensure that a bin entry had the dimensions of a firing rate, Hz. The histogram was

subsequently smoothed by a gaussian filter with a standard deviation equal to 1 bin

size.

Events were detected using the procedure detailed in the Results Section. At the

end of this procedure, all spikes were either assigned to an event or were classified as

noise. The event-reliability is the fraction of trials on which a spike was observed during

that event, the event-jitter is the standard deviation of the spike times belonging to

the event. The event-precision is the inverse of the event-jitter. For a given condition
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(amplitude, offset or initial current step) the reliability, precision and jitter are defined

as the event-reliability, event-jitter and event-precision averaged across all events.

In the event finding procedure we use three techniques that are described below:

the Victor-Purpura distance; the fuzzy clustering method and classification entropy

and mutual information.

3.3.4 Calculation of the VP distance

Briefly, the Victor-Purpura (VP) metric (Victor and Purpura, 1996) calculates the

distance between two spike trains A and B by calculating the cost of transforming A

into B (or B into A - the measure is symmetric). This distance is obtained as the

minimum cost of transformation under the following rules: adding or removing a spike

from A costs +1 point, while sliding spikes forward or backward in time by an interval

|dt| costs q times |dt|. The variable q represents the sensitivity of the metric to the

timing of spikes and is expressed in units of 1/ms. For large q values it is frequently

cheaper to add and remove spikes than to move them. Hence, for large q, the metric

is simply the number of spikes with different times between the two trains. For small

q values, spike moving transformations are cheap, leaving the majority of the metric’s

value to the difference in the number of spikes which must be added or removed to

produce train B; in the limit, the metric becomes the difference in the number of spikes

in each spike train.

3.3.5 Fuzzy clustering algorithm

Fuzzy c-means (FCM) was used to cluster trials into groups that had similar spike

timings. FCM can be understood by first considering K-means clustering (also, but

less commonly, referred to as c-means). In a K-means clustering, a number of clusters

is chosen (Nc) and the objects to be clustered are assigned on a random basis to
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each of the potential clusters (Duda et al., 2001). Using these assignments, the mean

of each cluster is found. Then, using these means, objects are re-assigned to each

cluster based on which cluster center to which they are closest. This process repeats

until the cluster centers have converged onto stable values or a maximum iteration

count is reached. This type of clustering minimizes the sum of the squared distances

of the clustered objects from their cluster means. FCM functions in the same way,

but rather than belonging to any particular cluster, each object i is assigned a set of

normalized probabilities uij of belonging to cluster j (Bezdek, 1981). This is equivalent

to minimizing a non-linear objective function of the distances of the objects from the

cluster centers, characterized by the fuzzifier parameter, which is set to two. A more

complete description is given in (Fellous et al., 2004). We use FCM on the columns of

the pair-wise distance matrix (see Subsection 3.3.4 - Calculation of the VP distance)

because similar trials will have a similar distance from all other trials and are thus

represented by similar columns (Fellous et al., 2004). The computational effort of FCM

increases with the number of vectors (Ntrial) as well as the dimensionality of the vectors

(also Ntrial). Hence, we reduced the dimensionality from Ntrial to 10 components using

principal component analysis (PCA) (Jolliffe, 2002). These components accounted for

at least 80% of the variance and resulted in clusterings that were similar to those

obtained using all principal components.

3.3.6 Calculation of entropy and mutual information between

classifications

The outcome of the FCM procedure is that each spike train is assigned to a cluster.

Formally, a set of trials has a classification ci, where i is the trial index between 1

and Ntrial; and the classification c is a number between 1 and the number of clusters

Nc. The class distribution pj is the fraction of trials which were classified as class j,
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pj = 1
Ntrial

∑Ntrial

i=1 δ(j − ci), where the δ denotes the Kronecker delta. The diversity

of the classification was characterized by the entropy S = −
∑Nc

u=j pj log2(pj), where

the sum was over all nonzero pj values because 0 log 0 was defined to be zero (Cover

and Thomas, 1991). The entropy S was zero (minimal diversity) when all trials were

assigned to the same class and was maximal at S = log2(Nc) when all classes had the

same probability of occurring (maximal diversity). The entropy was also calculated for

continuous values, such as VP distances between pairs of spike trains, in which case

the same formulas were applied to a binned probability distribution. The estimation of

entropy was biased (Panzeri and Treves, 1995; Strong et al., 1998). However, because

these values were used for comparative purposes no bias correction was applied.

The mutual information was used to measure the similarity between two classifi-

cations. The joint distribution between two classifications ci and dj with Nc and Nd

classes, was computed as: pij = 1
Ntrial

∑Ntrial

k=1 δ(ck−i)δ(dk−j) . The mutual information

was then expressed as I = Sc+Sd+
∑Nc

i=1

∑Nd

j=1 pijlog2(pij), with Sc = −
∑Nc

i=1 pc
i log2(p

c
i)

and Sd = −
∑Nd

j=1 pd
j log2(p

d
j ). In these formulas, the class distributions for c and d have

a different subscript in order to distinguish them. Hence, here, i refers to the clas-

sification rather than being a trial index. To obtain a measure between 0 and 1 we

normalized the mutual information by the maximum entropy, yielding the normalized

mutual information IN = I/ max(Sc, Sd).
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3.4 Results: Finding spike patterns and determin-

ing the event structure in artificial data

3.4.1 Overview and goal of the event finding procedure

In a recent study we uncovered multiple spike patterns in trials obtained in response

to repeated presentation of the same stimulus (Fellous et al., 2004; Reinagel and Reid,

2002). Spike patterns are present when trials, or at least short segments thereof, can be

separated in two (or more) distinct groups of spike sequences. As an example consider

the case where on some trials the neuron spikes at 10 and 35 ms (relative to stimulus

onset), whereas on other trials it spikes at 15 and 30 ms. This group of trials would be

considered comprised of two distinct patterns as long as there are no trials with spikes

at 15 and 35 ms or 10 and 30 ms. Hence, spike patterns correspond to a within-trial

correlation, because, in the example, a spike at 10 ms implies that a spike will be found

at 35 ms with a high probability. The problem of finding spike patterns is made harder

by the presence of spike-time jitter and trial-to-trial unreliability.

We designed a method to uncover patterns independently of the event structure and

then used the patterns to construct the event structure, which can subsequently be used

to validate the extracted patterns. The method itself is unsupervised, but four param-

eters need to be provided. The four parameters are: the threshold for finding events

(parameter tISI , Subsection 3.4.2 - The interval method for identifying events);

the temporal resolution for which two spike times are considered similar (parameter:

q, Subsection 3.4.3 - Selecting the temporal resolution parameter q); the num-

ber of patterns the clustering algorithm looks for (parameter Nc, which stands for the

number of clusters, Subsection 3.4.4 - Selecting the number of patterns/clusters

Nc); a threshold tROC which determines which events need to be merged because they

are common to multiple spike patterns (Subsection 3.4.5 - Merging events common
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across multiple patterns). For the parameter settings used here, each cluster cor-

responds to a spike pattern, hence we will use these designations interchangeably. The

procedure has been tested on short temporal segments with on average approximately

2 or 3 spikes per trial. These segments can be found by cutting spike trains at times

with a low or zero spike rate in the spike time histogram.

The basic premise is that two trials on which the same pattern was produced (in the

following text we restrict the discussion to one segment) are more similar to each other

than two trials on which different patterns were produced. We use the Victor-Purpura

distance (VP, Victor and Purpura (1996) see Subsection 3.3.4 - Calculation of the

VP distance) to quantify the similarity. The distance between spike trains i and j

is represented as a matrix dij. The distance matrix generally appeared unstructured

when the trials were arranged in the order in which they were recorded (look ahead

to Figure 3.12A for an example). The goal is to re-order the matrix such that it be-

comes block-diagonal (Figure 3.12F). The block diagonals correspond to trials that have

a small distance among themselves and are more distant to trials outside the block.

That is, blocks on the diagonal correspond to spike patterns. This goal is achieved

using the fuzzy c-means (FCM) method (Bezdek, 1981) applied to the columns of the

distance matrix (see Subsection 3.3.5 - Fuzzy clustering algorithm). FCM finds

Nc clusters and assigns to each trial a probability of belonging to a cluster. If the

clustering is good each trial belongs to only one cluster with a high probability, if it

is bad a trial has similar probabilities of belonging to two or more different clusters.

Once patterns have been uncovered a preliminary event structure is determined using

on each pattern the method outlined in the Subsection 3.4.2 The interval method

for identifying events (Tiesinga et al., 2002). The common events that occur in mul-

tiple spike patterns were found and merged using an Receiver Operating Characteristic

(ROC) analysis (Green and Swets, 1966). After this analysis a cluster-assisted event
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structure is available. For the purpose of this paper the spike pattern detection and

event assignments were manually checked and corrected using an in-house interactive

software tool. A comparison of intuitively correct event structures is shown in Figure

3.2. All 474 segments were run through the event finding procedure with default pa-

rameter values, and the results compared to the intuitively correct event clustering as

determined by this author. Fourty-three percent of the segments were “Acceptable”,

“Good” or “Excellent”. Eight-nine percent were equal or better than “Mediocre,” im-

plying a small number of errors. “Poor” data was excluded from analysis as lacking

clear event features, and mediocre data was corrected by hand, either by adjusting the

parameters of the algorithm for each set, or by manually assigning spikes to events.

Figure 3.2: Summary of a comparison between automatically detected events and events
categorized by eye. Four-hundred and seventy four segments of data were analyzed from
the data sets described in this paper, all with one set of parameter values. Each was run
through the detection algorithm described in 3.3.1, and the output event finding was
displayed. The author then rated each event-clustering based on his intuitive estimate
of the correct number of events. “Excellent” indicated an exact agreement, “Good”
indicated one or two mergers of nearby events. “Acceptable” indicated mergers between
near, but more clearly distinct events, “Mediocre” indicated at least one large merger
error or that part of the data set was not properly divisible into events, and “Poor”
indicated that the data set consisted of spike times not properly divisible into events.
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3.4.2 The interval method for identifying events

Our event-finding procedure is based on the interspike intervals (ISI) of an aggregate

spike train, which is obtained by combining spikes across all trials into one set and

sorting them, with the earliest spikes first (Tiesinga et al., 2002). Intuitively, consecu-

tive spikes in the same event are close together, and have a small ISI, whereas those in

different events are further apart (Figure 3.3A). We can thus separate spikes in different

events using a threshold tISI : only spikes separated by an interval less than tISI are

considered to be in the same event. In addition, we require that each event contains at

least ms spikes. Taken together, this leads to the following algorithm.

Figure 3.3: It is not always possible to choose an appropriate threshold for the interval
method. (A-B) In each panel, we show, from top to bottom, (a) the rastergram, (b) the
aggregate spike train and (c) the ISI time series. The relevant time scales are indicated
in the graph: the maximum ISI between two spikes in the same event, the minimum and
the maximum ISI between two spikes in different events. An estimate for the threshold,
0.1 times the maximum ISI, is shown as a dashed line in panel c. (A) An example with
one spike pattern where an appropriate threshold can be chosen that is higher than the
maximum ISI within an event but less than the minimum ISI between events. (B) An
example with two spike patterns (labeled by α and β) where there is no such threshold
that separates within-event intervals from those between events.

1. Take all spikes from all trials and place them in an aggregate, time ordered list;

2. Beginning with the first spike, collect spikes (and remove them from the list) until
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the difference between the last collected spike and the next spike is greater than

tISI ;

3. If the collected spikes exceed the minimum number of spikes allowed in an event

(ms) assign them to a new event. Otherwise, categorize the spikes as noise.

4. If any spikes remain in the time ordered list, return to step 2.

We set a minimum spike number for two reasons. First, to avoid calculating the

precision based on too few spikes. Second, to avoid interpreting a near coincidence

of two or more noise spikes as an event. To see how this could happen, consider the

following hypothetical situation where the data set contains a Poisson process with a

fixed rate of Rnoise. The aggregate spike train is then a Poisson process with a rate

R = NtrialRnoise. The probability p of obtaining two spikes with a distance of less than

t is p = R
∫ t

0
e−Rsds = 1 − e−Rt (Rieke et al., 1997). Because R increases with the

number of trials, for a large enough number of trials there likely will be near-coincident

noise spikes. Specifically, for Rnoise = 1Hz and Ntrial = 100, the probability of a within

3 ms coincidence is 26%. In the analysis performed for this paper, between 10 and 150

trials were used and the ms was set to two.

The correct threshold for interspike intervals is determined by three distinct time

scales in the data, which are shown in Figure 3.3. An appropriate threshold is greater

than all interspike intervals within an event but less than all ISIs between spikes in dif-

ferent events (Figure 3.3A). Because two consecutive spikes in the aggregate spike train

come from different trials, the inter-event interval can be smaller than the refractory

period, which means that in some cases there is no value for the threshold that satisfies

the constraint (Figure 3.3B). This problem is addressed by grouping trials according to

the spike patterns they express and analyzing each group separately with the interval

method. We found that a value of 10% of the maximum ISI often provided results
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similar to events detected by hand. As a rule of thumb the appropriate value for the

threshold decreases as the number of available trials increases. For the data sets in this

paper, we used a tISI between 1 and 3 ms.

3.4.3 Selecting the temporal resolution parameter q

The first step in uncovering spike patterns is to select an appropriate value for the

temporal-resolution-parameter q. The defining characteristic of spike patterns is a sig-

nificant difference in event timing. Furthermore, spikes in spike patterns could be

unreliable, which means there could be a difference in spike count between trials ex-

pressing the same spike pattern. Hence, low q values are not appropriate because the

distance is dominated by the difference in spike count, which would split up patterns

with unreliable events. For low q values the elements dij of the distance matrix are

approximately integer. High q values are also not appropriate because the distance is

dominated by small differences in spike timing, which splits trials expressing the same

pattern when events are imprecise. Because the distance is the difference in spike count

plus twice the number of spike pairs that are different by more than 2
q
, it again takes

values close to integers. (Note that it is not exactly an integer because there still are

some spike pairs separated by less than 2
q
, although their number indeed goes to zero

in the limit where q goes to infinity - in practice this occurs when the time resolution

of spike recording is reached, at which point spikes are either identical or deleted and

added, and the metric takes on integer values only). The optimal q value is in between

these two extremes. We developed a procedure to find this value using only information

on how the distances dij behave as a function of q.

The procedure is illustrated using artificially patterned spike trains mimicking ex-

perimental data (Figure 3.4A). The first step is to combine all the matrix elements

(Figure 3.4B) into one set and calculate a histogram (Figure 3.4C). A new matrix is
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obtained by stacking the histograms for each q value as columns (Figure 3.4D). The im-

age of this matrix shows a transition from integer-dominated distances for low q values

(Figure 3.4D, left ellipse) to integer-dominated distances for high q values (Figure 3.4D,

right ellipse) via a broader and a less peaked transition state. We find that the best

results are obtained by using log(q) values uniformly distributed between 10−4 and 2

(ms−1). The transition can be visualized by determining the fraction of distances within

0.05 of an integer as a function of q (Figure 3.4E, black line, left scale). As expected a

trough emerges at intermediate q values. Because the entropy of a distribution with a

sharp peak is lower than that of a broader distribution, the transition is signaled by a

peak in the entropy of the distance distribution as a function of q (Figure 3.4E, gray

line, right scale). The entropy was calculated using the formula Sd =
∑

hi log2(hi)|hi 6=0,

where subscript d stands for distance and hi is the fraction of distance values falling in

the ith bin of distance histogram (see Subsection 3.3.6 - Calculation of entropy and

mutual information between classifications). We achieved good results using 200

bins to cover distance values obtained across the entire range of q values studied. A

more sensitive measure for detecting changes in the distinguishability of patterns is

based on the coefficient of variation of the distances (CVd), which, unlike the entropy

measure, does not require binning of the data. The CVd generally decreased with q

(Figure 3.4F, black line, left scale), but there were modulations in the rate of change

which reflected the structure in the data that we sought to uncover. These modula-

tions were clearest in the differenced CVd (dCVd, Figure 3.4F, gray line, right scale).

This measure corresponded to the derivative of CVd with respect to log10(q), because

the log(q) values were uniformly distributed. We found that the best clusterings were

obtained at the q value corresponding to the deepest trough after the highest peak.

However, this location varied across independent stochastic realizations of spike trains

generated using the same spike-pattern parameters (see Subsection 3.4.6 Binary word
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representation of spike patterns). Hence, to make the procedure more robust we

choose as q value the mean of the position of the peak in the entropy Sd (less sensitive

but robust) and the position of the deepest trough after the highest peak in the dCVd

(sensitive, but less robust). Note that the mean of the peak and trough is not exactly

in the middle when the data are plotted on a log scale for q as in Figure 3.4E and F.

To gain more insight in the sensitivity of the dCVd modulation to features of the

spike patterns, we analyzed the clusterings obtained for different q values. For this

analysis, we used the best clustering (optimal Nc value) determined by the differenced

gap statistic defined in the following Subsection 3.4.4 Selecting the number of pat-

terns/clusters Nc. A clustering assigns to each trial i a class ci, which is also referred

to as a classification. Two clusterings can be compared by computing the normalized

mutual information IN between two classifications (see Subsection 3.3.6 - Calculation

of entropy and mutual information between classifications). When the two

clusterings are identical, IN = 1. This is true even when the class labels are different

(for instance when class 1 in classification c corresponds to class 2 in classification d),

because the mutual information is insensitive to a permutation of class labels.

We constructed a similarity matrix SMC using the normalized mutual information

IN between clusterings obtained for different q values. Specifically, the element in

the ith row and jth column is the IN between the clustering for the ith q value and

the clustering for the jth q value (both with the correct number of clusters Nc). The

resulting matrix (Figure 3.5A) consists of diagonal blocks, indicating that the same

clustering was obtained over a range of q values: the larger the block, the more robust

the clustering. Because the data was generated from a known parameter set, the

correct class assignments were known. Hence, the mutual information between the

best clustering for a specific q value and the correct classification was determined. The

resulting graph of IN versus q (Figure 3.5B) consisted of a sequence of steps, each
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Figure 3.4: Heuristic for selecting the temporal resolution parameter q. (A) Rastergram
of 45 trials containing three patterns (separated by horizontal dashed lines). (B) The
distance matrix for the below-determined q value. The matrix has a diagonal structure
with blocks of small distance values corresponding to the patterns (as labeled by the
numbers inside the blocks). (C) The histogram of the matrix elements of the distance
matrix shown in panel B. (D) Density plot of the distance distribution as a function of
q. Each column represents a histogram just as the one shown in panel C, the location of
which is indicated by a vertical dashed line. The ellipses highlight examples of enhanced
density for integer values for the distance for small and large values of q. Panels D-F
have a common x-axis scale, which is shown in panel F. (E) We show (black curve,
left-hand-side scale) the fraction of distances within 0.05 from an integer and (gray
curve, right-hand-side scale) the entropy of the distance histogram as a function of q.
(F) We show (black curve, left-hand-side scale) CV of the distances and (gray curve,
right-hand-side scale) the differenced CV .

55



corresponding to a distinct clustering that was obtained across a range of q values.

Transitions between clusterings are related to modulations in the dCVd (Figure 3.5C).

The correct clustering was obtained just after the highest peak in dCVd (Figure 3.5C,

white arrow in panel A) but only for a small range of q values. The next best clustering

was obtained in a broad range of q values around the deepest trough following the

highest peak in the dCVd (Figure 3.5C, asterisk in panel A). This clustering was selected

by the heuristic. Although for experimental data the correct clustering is not available,

the similarity matrix between clusterings for different q values can still be determined

in order to select a small number of distinct and robust clusterings for more detailed

evaluation.

3.4.4 Selecting the number of patterns/clusters Nc

Once an appropriate q value is selected, the optimal number of clusters Nc needs to

be determined. This is a difficult problem that has attracted significant attention

(Bouguessa et al., 2006; Pal and Bezdek, 1995; Rezaee et al., 1998; Zahid et al., 1999).

Intuitively, the best clustering minimizes the distance between trials within a cluster,

while maximizing the distance between trials in different clusters. The output of the

FCM algorithm is the matrix uij, which is the probability of trial i belonging to cluster

j and the cluster centers, which are obtained by averaging across all vectors correspond-

ing to trials in the cluster. A large number of cluster-validation measures have been

proposed based on uij and the cluster centers that quantify these intuitive expectations

(Bouguessa et al., 2006). An estimate for the number of clusters is obtained as the

number that minimizes (or maximizes, as appropriate) these validation measures. In

previous work, these measures were successfully tested on data generated from Gaus-

sians mixture models (Bouguessa et al., 2006). When we applied these measures to our

data we did not achieve success because our experimental data did not correspond to a

56



Figure 3.5: The q value chosen by the heuristic corresponds to a robust close-to-optimal
clustering. We analyzed an artificial data set with three patterns and a known classi-
fication. The FCM algorithm was applied to distance matrices for different q values,
with the number of clusters Nc set to three. (A) The pair-wise similarity between
clusterings (classifications) for different q values was quantified using the normalized
mutual information (IN) and is shown as an image. The range of IN = 0 to IN = 1 is
represented on a gray scale from white to black. The clustering indicated by the arrow
was optimal, the clustering picked by the q-value heuristic is part of the block labeled
by an asterisk. The blocks of similar clustering are delimited by dashed boxes, which
were obtained by clustering the classification similarity matrix. (B) The similarity be-
tween the known classification and those obtained by the FCM algorithm as a function
of q. The black arrow indicates the correct clustering. (C) We show (black curve,
left-hand-side scale) the dCVd and (gray curve, right-hand-side scale) the entropy of
the distances as a function of q. The dashed vertical lines in (B-C) correspond to the
dashed boxes in panel A. The vertical gray line is the q value chosen by the heuristic.
The x-axis scale is the same for panels A to C and is shown in panel C.
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Gaussian mixture model (see below). Instead, our criterion for picking the number of

clusters is based on the gap statistic (Tibshirani et al., 2001; Yan and Ye, 2007), which

is calculated as follows. The data is divided into Nc clusters with cluster assignments

ck. The within-cluster distance Dr for the rth cluster is the Euclidean distance dkk′ av-

eraged across pairs of trials in the same cluster, Dr =
∑

k,k′ δ(r− ck)δ(r− ck′)dkk′. Note

that the Euclidean distance is based on the first ten principal component coordinates of

columns in the distance matrix (see Subsection 3.3.5 - Fuzzy clustering algorithm),

because the spike trains themselves are not vectors in an Euclidean space (Victor and

Purpura, 1996). The weighted distance for Nc clusters is WNc
=

∑Nc

r=1
Dr

2nr
, here nr

is the number of elements in cluster r, that is, nr =
∑Ntrial

k=1 δ(r − ck). The quantity

W is compared to values of clusters obtained from clustering surrogate data that is

uniformly distributed in the range spanned by the original data. This yields
∼

W
i

Nc
for

the ith surrogate data set, the gap statistic then is: GNc
=

∑B
i=1 log(

∼

W
i

Nc
)− log(WNc

),

where B is the number of surrogates used. When data with C clusters was generated

using a Gaussian mixture model, this measure correctly peaked at Nc = C. For the ar-

tificial data generated based on our experimental recordings this was generally not the

case, because a cluster with only one pattern but with an unreliable event can always

be broken up in two clusters, yielding smaller within cluster distances. For instance,

consider the case for which event 2 is unreliable. The cluster containing the pattern can

be split into a cluster without a spike during event 2 and a second cluster with a spike

during event 2. We found that for an appropriate q value the biggest change in the

gap statistic occurred when a cluster containing two distinct patterns was split in two

(Figure 3.6A). We therefore used the following heuristic: we pick the number of clusters

obtained after the largest increase in the gap, that is the one yielding the largest value

of the gap difference, dGNc
= GNc

−GNc−1(asterisk in Figure 3.6A). For our data set we

added two more rules to the heuristic. We found them to be appropriate for our data,
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but we did not evaluate their performance on a broader set of data. Hence, for other

data sets the percentages quoted in the following should be adjusted if necessary. First,

when there are two or more nearly equal consecutive increases (here to within 20%),

we pick the cluster number obtained after the latest increase, even if it is the smaller

increase. Second, if the first dG value was the highest, but there was another peak a

certain fraction (here: 80%) of the highest dG value, this peak was chosen instead.

The heuristic for choosing q and Nc was studied using surrogate data sets with vary-

ing numbers of spike patterns and trials. For Figure 3.6, we generated ten independent

sets of 45 trials containing the same three spike patterns. For each q value the distance

matrix was first calculated, then clustered ten times for Nc values between 2 and 10.

For each Nc, the clustering with the lowest WNc
value was chosen. Subsequently, the

gap-statistic was determined by clustering B = 10 surrogate data sets. The number of

clusters that maximized dG was picked (for these data there was only one peak). The

clusterings so chosen were compared to the correct clustering in terms of the normalized

mutual information IN . In Figure 3.6B, the number of clusters chosen are shown as a

function of q. In the same graph the heuristic choice of q for each set of trials is indicated

by a tick and the mean q across ten sets is indicated by the dashed vertical line. This

mean q value is in the middle of the range of q values for which the dG statistic picks

the correct number of three clusters/patterns with 100% accuracy. For other q-values

there is a high variability in the number of clusters selected and the mean is different

from the correct value. In Figure 3.6C, IN is plotted as a function of q. It has a peak

value near 1, whose location is correctly predicted by the heuristically chosen value

of q. To evaluate how this performance generalizes to other patterns, we determined

three statistics: (1) How often the correct number of clusters is picked, (2) The mean

value of the normalized mutual information IN at the selected q and Nc value, (3) The

relative height of the peak in the difference gap statistic, dG. The relative height was
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Figure 3.6: The heuristics for finding the q value and the number of clusters perform
well for artificial data sets. (A) We show (black curve, left-hand-side scale) the gap-
statistic G and (gray curve, right-hand-side scale) its difference dG as a function of the
number of clusters. The number of clusters Nc reached after the highest increase in
the gap-statistic (at the peak of dG indicated by the asterisk) is selected as a heuristic
for the number of clusters in the data. (B) We generated ten independent artificial
data sets of 45 trials with three patterns all with the same statistics as those shown
in Figure 3.4. The average Nc value picked by the heuristic is plotted as a function of
q, the shaded area represents the standard deviation. (C) The similarity IN between
the clustering obtained with the selected Nc value and the known classification as a
function of q. The black line is the mean and the shaded area represents the standard
deviation. The dashed line in B and C is the mean value of the q value picked by the
heuristic, the choice for each of the ten data sets is indicated by the ticks at the top of
the graph (these ticks are restricted to be one of the log-uniform distributed q values).
The heuristically picked q value leads to an optimal similarity and an Nc that is equal
to the actual number of clusters present in the data.
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obtained by comparing the peak dG to the mean and standard deviation of the other

dG values with the peak value excluded. It was numerically equal to the peak in dG

minus the mean, after which the result was divided by the standard deviation. Values

exceeding 2 were considered good. We used two data sets that were based on analyzed

experimental data (the first one, E1, has been used for the data in Figures 3.4, 3.5 and

3.6) and an artificial set constructed to have four patterns. The procedure performed

well on all these sets as measured by the statistics (1) to (3). Specifically, the correct

number of clusters was picked between 90 and 100% of the time; IN exceeded 0.90 and

the peak in the gap was higher than 3. We also reduced the precision of set E1 by

doubling the jitter and in another simulation we halved the number of trials. We found

that the reduction in precision affected the performance of the procedure the most: the

correct number of clusters was picked only in 60% of the cases, IN was reduced to 0.6,

but the relative peak height of the difference gap-statistic remained at about 3.

3.4.5 Merging events common across multiple patterns

When for each individual spike pattern the events are detected using the interval

method, there are events common to multiple patterns. These common events have

to be merged prior to assessing the significance of the patterns. The t-test is a statis-

tical procedure for testing whether the means of two groups of data are equal under

the assumption that their standard deviations are the same (Larsen and Marx, 1986;

Rohatgi, 2003). The means (events) are considered different when the probability of

obtaining a t-value higher than the measured value is less than the significance level.

Within the context of the experimental data it is not possible to use this statistic to

design an automatic method for merging events. First, the t-statistic tests whether the

samples are drawn independently from one normal distribution. For the experimental

data, events are often split across patterns in a non-symmetric way. For instance, for
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spike times in a common event it is often the case that the spikes belonging to one pat-

tern always appear before those of the other pattern. This can be modeled by drawing

spikes from a normal distribution, sorting them and assigning the lowest half to one

group and the remainder to the second group. Because the spikes in these groups are

not independently drawn, the difference in means between the two groups would be

highly significant according to the t-statistic even though all spike times come from the

same distribution. Second, even if there is a well-defined criterion for pair-wise merging

of clusters, we found that the following problem arose. Consider three groups of spikes.

As groups 1 and 2 are merged, the standard deviation of the aggregate group will likely

increase. This increases the likelihood of the combined group merging with the third

group, even though by itself group 1 would not merge with group 3. Hence, the result

depended on the order in which the pair comparisons were made. Our goal was to

design a procedure that was characterized by only a few parameters that would yield

reproducible results, while addressing these preceding two issues.

The t-statistic measures the significance of the difference in means over the standard

deviation (∆m
σ

). We use a ROC analysis for the same purpose (Green and Swets,

1966), because it has the advantage that is does not assume an underlying Gaussian

distribution. Assume that there are two sets of spike times described by a probability

distribution p1(t) and p2(t), respectively, with the mean of the first being below the

mean of the second (see Figure 3.8A). A possible decision rule is to assign an observation

x to p1 if x < µ and to p2, otherwise (µ is the threshold parameter). The true positive

rate of this rule is 1 − ǫ1 =
∫ µ

−∞
p1(t)dt and the false positive rate is ǫ2 =

∫ µ

−∞
p2(t)dt.

The ROC curve is 1 − ǫ1 plotted versus ǫ2 for all possible choices of the threshold µ.

Because the theoretical distribution is not available, we use the empirical distribution

with a delta function at the location of each observation: p1(t) = 1
N

∑N
i=1 δ(t− ti), here

N is the number of observations xi. An analogous definition holds for p2(t). The area
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under the ROC curve ranges from 0.5 for distributions that cannot be distinguished to

1 for distributions that can be perfectly distinguished. We show two distributions in

Figure 3.8A, together with 30 samples drawn from them. The resulting ROC curve is

in panel B, with the area above the diagonal shown in gray. We use a scaled ROC value

defined as sROC = (ROCarea−0.5
0.5

)4 because we found it to have a larger dynamical range

(between 0 and 1) and to be more linear around 1
2
. The ROC and sROC measures

are compared in Figure 3.8C as a function of ∆m
σ

. The data set shown in Figure

3.8D contains more than two events. For each pair of events the sROC distance is

determined and placed in a distance matrix (Figure 3.8E). We cluster this matrix

using a hierarchical clustering method (using the Matlab routines linkage followed by

cluster), to merge all groups of events with a pair-wise sROC distance less than the

threshold tROC . Note that events are not merged pair-wise, all events are merged at

once after which their statistics (standard deviation, reliability) are recalculated. We

analyzed the performance of this procedure for multiple independent realizations of the

data sets. The procedure performed well even for sets with as few as eleven samples

per event and it was relatively insensitive to the value of the sROC threshold (Figure

3.8F). Typically, we use sROC thresholds of about 1
2
.

3.4.6 Binary word representation of spike patterns

Once the event structure has been determined, the data can be represented as binary

words for the purpose of validating the presence of spike patterns. In this analysis the

spike time jitter is ignored. Each trial is a binary word with a length (the number

of bits) equal to the number of events that were detected, a bit is one when there

was a spike during the event and zero otherwise. The entire experiment is reduced

to a matrix bij, with i being the trial index (from 1 to Ntrial) and j being the event

index (from 1 to NE). The null hypothesis is that each event is independently occupied
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Figure 3.7: The ROC-based criterion for merging events common across multiple pat-
terns. (A) Thirty trials of (black ticks) spikes drawn from a (black curve) Gaussian
with a mean of 30 ms and thirty trials of (gray ticks) spikes drawn from a (gray curve)
Gaussian with mean 40 ms. The standard deviation of the Gaussian was 5 ms for both
cases. (B) The ROC curve was estimated as the cumulative distribution of the first
group of spikes plotted versus that of the second group of spikes (see Subsection 3.4.5
- Merging events common across multiple patterns). The ROC area was 0.87.
The scaled ROC (sROC) was 0.30, which was obtained by normalizing the ROC area
above the diagonal by 0.5 and taking the fourth power. (C) The same procedure was
repeated for different values of the difference in means between the two distributions.
We show the (gray curve) ROC and (black curve) sROC area versus the difference of
theoretical means over the standard deviation (∆m

σ
). We use the sROC because it is

more linear near ∆m
σ

= 2. (continued) . . .
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Figure 3.8: (continued) . . . (D) Eleven trials of an example data set consisting of 8
events, of which two sets should be merged based on the criterion ∆m

σ
< 1. In (top)

the rastergram the events are sorted by their theoretical means, with the corresponding
spikes rendered alternately in gray and black. (Bottom) the histogram obtained from
one realization of the data set. The ticks at the bottom represent the theoretical means
of the events and are labeled 1 to 8, with the events to be merged shown in a box. (E)
Matrix of sROC distances between the events. The events are ordered (the numbers on
the x-axis correspond to those in panel D) according to a hierarchical clustering with
an sROC threshold of tROC = 1

2
. (F, black curves) The normalized mutual information

between the classification using clustering and the desired cluster and (gray curves) the
number of events remaining after merging. The error bars on the mutual information
represent the standard deviation across 100 independent realizations of the data set. For
the event distribution shown here, the desired merges are not always achieved, because
sometimes events 6 and 7 are merged and sometimes events 7 and 8 are merged.
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with a probability pi, which is the reliability of the event. The event-reliability is

estimated as the fraction ri of trials on which there is spike during the event, specifically

ri = 1
Ntrial

∑Ntrial

i=1 bij and pj =< rj >, where the average is taken across experiments

with the same number of trials. The probability for obtaining a word w = [b1 . . . bNE
] =

∑NE

j=1 bj2
j−1 under the null hypothesis is a product of Bernouilli probabilities, Pnull =

∏NE

j=1 p
bj

j (1 − pj)
1−bj . When there are two (or more) spike patterns, the experiment is

described as a mixture model of two (or more) word distributions. For simplicity we

describe the procedure assuming that there are only two patterns: A and B. This yields

Ppatt(w) = cAPA(w)+ cBPB(w) with cA being the fraction of trials with pattern A, and

cB = 1 − cA, PA(w) =
∏NE

j=1 p
bj

A,j(1 − pA,j)
1−bj and PB(w) =

∏NE

j=1 p
bj

B,j(1 − pB,j)
1−bj .

In this expression pA, j and pB, j are the reliabilities for event j in pattern A and B,

respectively.

Certain events in pattern A are never occupied because they belong to pattern B.

For a word containing such an event PA(w) = 0. In order to estimate the parameters

for this pattern distribution, each trial needs to be assigned to a pattern (for instance

using the clustering procedure described in the preceding text). The reliabilities pA,j

are then estimated as RA,j = 1
NA

∑
i∈A bij, where the average is across all trials i on

which pattern A was obtained. The pattern probability
∧

CA is estimated as the fraction

of trials on which pattern A was obtained. Similar expressions hold for rB,j and
∧

CB.

The pattern distribution is not necessary in order to accept or reject the null hy-

pothesis, but we use it to determine how many trials are required to reliably detect a

given pattern using estimated reliabilities. Each experiment bij corresponds to Ntrial

words wj, which are represented by the word distribution nw =
∑

δ(w − wi), where δ,

as before, denotes the Kronecker delta. The significance of the pattern is determined

in terms of the empirical χ2 computed using the estimated reliabilities ri:

χ2
emp,null =

∑
w

(nw−NtrialPnull(w|rj))
2

NtrialPnull(w|rj)
.
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When the probability to obtain this χ2 value is less than the significance level, the

null-hypothesis is rejected, which means there is a significant spike pattern.

We examine this using a distribution with parameter values pA =[0.4 0 0.8 0],

cA = 0.5, pB =[0 0.6 0.6 0.8], and cB = 0.5. The corresponding parameter value for the

null-hypothesis distribution is p =[0.2 0.3 0.7 0.4]. The rastergram and binary word

representation for an example experiment with pattern A and B each expressed on ten

trials is shown in Figure 3.9A and B. The corresponding theoretical reliability model

is shown in panel C. In panel D the empirical word distribution (black vertical lines)

is compared to the theoretical pattern distribution Ppatt (gray vertical bars), whereas

in panel E it is compared to the theoretical null-hypothesis distribution Pnull (gray

vertical bars). The key observation is that the empirical distribution is different from

both theoretical distributions. As the number of trials increases the χ2 difference of the

pattern spike trains with the theoretical pattern distribution is expected to decrease,

whereas the difference with the null-hypothesis distribution should increase.

To examine this we generated a thousand word distributions nw from the pattern

distribution and the null-hypothesis distribution and calculated the χ2 between the

respective word distributions and the exact null-hypothesis distribution. For 20 trials

(Figure 3.10A) the two distributions of χ2-values obtained across 1000 realizations of

the empirical word distribution were overlapping, whereas for 100 trials (Figure 3.10

B) they were clearly separated. The ability to distinguish these two χ2 values based

on a single experiment was quantified using an ROC analysis based on the difference

between the two distributions. The area under the ROC curve increased from 0.5 (not

distinguishable) as the number of trials increased. For more than 50 trials the empirical

word distribution could be perfectly distinguished from the null-hypothesis distribution

(area under ROC curve close to 1), but the distinguishability was better than chance

for more than ten trials.

67



Figure 3.9: Binary word representation for a data set with patterns. (A) An example
rastergram with twenty trials and two patterns (pattern 1 for the bottom ten trials
and pattern 2 for the top ten trials). (B) In the corresponding binary representation,
the presence of a spike during an event is indicated by a one (dark rectangle) and the
absence by a zero. (C) The event model from which the data in panel A was obtained.
The event occupation is a mixture. The event reliability for pattern 1 is indicated by the
dark bars, whereas the event reliability of pattern 2 is indicated by the white-filled bars.
The event model corresponding to the null hypothesis is the sum of both bars. Each
binary word can be represented as a number, for four events this number is between 1
and 16 (the binary value plus one). Each binary word occurs with a certain probability,
nw, which is different for (D) the pattern model than for (E) the null-hypothesis model.
In (D-E) the theoretical probabilities are represented by the gray bars, the empirical
distribution corresponding to the data in panel B is indicated by the stem graphs.

68



Figure 3.10: The difference between the patterned spike trains and the null-hypothesis
model can be determined perfectly when more than fifty trials are available. The χ2

statistic is calculated for the difference between an empirical and theoretical distri-
bution (see panel D and E in Figure 3.9). We determined the χ2 distribution based
on a thousand realizations of the empirical distribution for (A) twenty trials and (B)
hundred trials. The data is drawn from (dark bars) the pattern model or (gray bars)
the equivalent null-hypothesis model and is compared to the corresponding theoretical
null-hypothesis model. In (B) pattern models are perfectly distinguishable from the
null-hypothesis model because the distributions do not overlap. (C) The distinguisha-
bility is quantified using the area under the ROC curve which varies between 0.5 (not
distinguishable) and 1 (perfectly distinguishable).
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3.5 Finding spike patterns and determining the event

structure in experimental data

We applied our event finding procedure to an experimental data set comprised of 11

experiments on 10 different cells with between 18 and 51 trials per condition (Table

3.1). These data were collected for the purpose of a different analysis, which will be

published elsewhere. A current comprised of a constant current step (offset) and a

fluctuating drive was injected in the soma of a layer 5 pyramidal cell. The fluctuating

drive was exactly the same on each trial, but we used eleven different amplitudes (the

factor by which the fluctuating drive was multiplied before it was added on top of the

current step), which were expressed as percentages. Because the injected waveform

was prepared off-line and stored in a file, at the time of recording we could only adapt

the overall gain to the properties of the neuron we recorded from. The overall gain

was chosen such that the neuron produced spikes for the lowest value of the amplitude,

which was achieved for 9/10 cells.

In Figure 3.11 we show rastergrams for four example cells, with at the bottom of

each panel the template of the injected current waveform (without the current step

and scaling factor). The rastergram consists of blocks of constant amplitude, with

the highest amplitude on top. Within each block the trials are in the order they were

collected, with the earliest at the bottom. In the rastergram of Figure 3.11A, events are

visible as lines of spike alignments that appear for low to intermediate amplitudes and

become sharper when the amplitude is increased further. Overall this graph suggests

that the precision and the reliability improve with amplitude (see Section 3.3.1 for

information on calculating the reliability).

A second example is shown in Figure 3.11B. The overall behavior is similar, except

that the cell shows more adaptation. For zero amplitude, this cell stopped spiking after
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Figure 3.11: Rastergrams obtained in response to injection of the same fluctuating
current waveform for four different neurons. Each line in the rastergram represents
a spike train obtained on a trial, with the x ordinate of each tick being the spike
time. The spike trains are ordered in blocks (delineated by horizontal lines) based
on the amplitude of the injected current, expressed as a percentage, with the highest
amplitude on top. Within each block the trials are ordered as they were recorded, with
the earliest trial at the bottom. The injected current is shown for one amplitude at the
bottom. Each panel shows the response of an example cell, the details of which are in
the main text.
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about 500 ms, whereas the cell in panel A continued spiking to the end of the trial.

We characterized this in terms of the ratio of the mean of the first interspike interval

(ISI) divided by the mean of the second ISI. This was 0.92 for panel A, and 1.1 for

panel B (mean across 5 cells: 1.2). For the example in panel C, new events emerged as

the amplitude increased, but the position and precision of the other events appeared

not to be affected. The rastergram in panel D shows a response that did not strongly

depend on amplitude. However, this example is instructive because it shows the type of

nonstationary responses that were encountered in the data. Consider the time interval

centered around 650 ms (indicated by the arrow), a spike was present on the later trials,

but not during the earlier trials. In general we attempted to record as many trials as

possible, which means that we stopped only when the cell could not maintain a stable

membrane potential or input resistance between the stimulation periods. Therefore,

the last few trials usually were different and were discarded prior to further analysis.

The event finding algorithm is robust against the effects of nonstationarity.

We illustrate the procedure to find events using the data shown in Figure 3.11A at

an amplitude of 70% and in the time segment starting at 650 ms and ending at 850 ms

(Figure 3.12B). Because the events were overlapping they could not be separated using

an algorithm based on an ISI threshold. First, the similarity matrix was determined

(Figure 3.12B). The pixel in the ith row and jth row represents the Victor-Purpura (VP)

distance between trial i and j (Victor and Purpura, 1996). The VP metric requires

a temporal resolution parameter q, which represents a trade-off between reliability

and precision: a pair of spikes between the two spike trains are considered different

when their difference exceeds 2
q
. The q should be chosen such that spike patterns

are most distinguishable. Our heuristic is based on how the distribution of distance

values (the elements in the distance matrix) varies as a function of q. We utilize the

entropy obtained by binning the distribution in 200 bins (Figure 3.12C, gray line)
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Figure 3.12: The procedure for detecting and characterizing events. (A) Rastergram of
the data in Figure 3.11A for an amplitude of 70% and the time segment between 650
ms and 850 ms. (B) Distance matrix for the trials shown in panel A. The pixel on the
ith row and jth column represents the Victor-Purpura distance between the spike train
on trial i and the one on trial j using the selected value for the temporal resolution
parameter q. The range from small to large distances is mapped onto a gray scale going
from dark to white. (C) The heuristic for determining q is based on the distribution
of the elements of the distance matrix, referred to as the distances. We show (black
curve, left-hand-side scale) the dCVd and (gray curve, right-hand-side scale) the entropy
of the distances as a function of q. The coefficient of variation was calculated as the
ratio of the standard deviation of the distances over their mean at q-values whose log10

values were uniformly distributed. The dCVd is the difference between consecutive CVd

values and thus corresponds to a logarithmic derivative. The entropy is obtained by
binning the distances and using the standard p log(p) expression (see Section 3.3.6 -
Calculation of entropy and mutual information between classifications). The
q value chosen by the heuristic is the mean of the q-value at which the entropy has
a maximum and the location of the deepest trough in the dCVd that occurs after the
highest peak. (continued) . . .
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Figure 3.13: (3.12 continued) . . . (D) The heuristic for determining the number of
spike patterns. The FCM algorithm is used to find Nc clusters in the data, after
which the gap-statistic G(Nc) is computed. Each cluster is hypothesized to be a spike
pattern. The gap-statistic measures the reduction of within cluster variance achieved
by clustering relative to a similarly clustered surrogate data set with points uniformly
distributed in the hypercube spanned by the range of the original data. The derivative
of the G is dG(Nc) = G(Nc)−G(Nc−1). We show the (black curve, left-hand-side scale)
G(Nc) and (gray curve, right-hand-side scale) dG(Nc). The errorbars are the standard
deviation obtained across 50 surrogates. The value of Nc chosen by the heuristic is the
one for which the dG is maximal (asterisk). (E) Rastergram and (F) distance matrices
with the trials reordered according to their cluster membership. The horizontal lines in
(E) separate the clusters and the vertical gray bands are the events. On two instances
events common to more than one cluster were merged as indicated by the arrows.
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and the logarithmic derivative of the coefficient of variation of the distances (dCVd).

The CVd is the standard deviation of the distance divided by its mean. The log-

derivative is approximated by differencing the CV at logarithmically-spaced q values,

this corresponds to taking the derivative with respect to log10 q and is referred to as

the dCVd (Figure 3.12C, black line). For small q, the distance between two spike trains

is equal to the difference in spike counts, which means it can only take close-to-integer

values yielding a low value for the entropy. For large q, each spike in the two spike

trains is considered different. Hence, the distance is again close-to-integer and of low

entropy because it is the sum of spike counts. For intermediate q values there is a broad

peak, for which spike patterns are distinguishable. The dCVd is more sensitive to the

specific q value as indicated by the peak and troughs, each of which reflects a change

in the spike-pattern feature the measure is sensitive to. We found that the most robust

estimate was produced by taking the mean of these two values (dashed vertical line in

Figure 3.12C).

The second step was to cluster the distance matrix at the chosen q value. Each

column was interpreted as a vector in a high-dimensional space. For computational

efficiency, the dimensionality was reduced by applying principal component analysis and

retaining only the 10 components with the highest variance. (We found 10 components

to be adequate for our dataset, but for different data sets a procedure is necessary to

pick the number of components based on the desired fraction of the data variance to be

retained in the components (Jolliffe, 2002)). These data were then analyzed using the

fuzzy c-means (FCM) procedure with the fuzzifier parameter kept at its default value of

2. This procedure requires the number of clusters to be specified, which we determined

using the differenced gap-statistic dG (Tibshirani et al., 2001), which is a function of the

number of clusters. The gap-statistic measures the improvement of the within cluster

variance relative to data, clustered by the same method, in which there are no clusters
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because the data points fill the space uniformly within the range of the original data.

When used on data for which the gap-statistic was developed, the gap-statistic had a

peak at the actual number of clusters. For our data the gap-statistic initially increased

quickly with the number of clusters, followed by a smaller rate-of-increase. We found

that the number of clusters reached after the largest increase, which is indicated by

the peak in the differenced gap-statistic (asterisk in Figure 3.12D), in most cases led to

the same number of clusters that would be selected manually. This heuristic indicated

that there were 3 clusters in the data (Figure 3.12F). In Figure 3.12E, the clusters

(spike patterns) are separated by vertical lines. Within each cluster, the events are well

separated so they can easily found by the ISI-based method (Tiesinga et al., 2002).

Across clusters there are events with similar spike times, which need to be merged

(example: first spike time in cluster 1 and 2 in Figure 3.12E). An ROC analysis is

used to determine how distinguishable the two groups of spikes are. This is a standard

procedure to evaluate the results of the two-alternative-force-choice task (Green and

Swets, 1966). The ROC was rescaled to yield the sROC (see Subsection 3.4.5 - Merging

events common across multiple patterns), which takes values between 0 and 1. If

the two groups are non-overlapping the sROC is equal to 1. The merging procedure is

characterized by a threshold for sROC below which groups of events are considered the

same. The merged events in Figure 3.12E, indicated by arrows, were obtained using a

threshold of 0.5.

The events visible in the multi-amplitude rastergrams (Figure 3.11) persist across

amplitudes. This means that the precision, reliability and mean spike time of events

can be compared across amplitudes. One strategy would be to use procedure outlined

in Figure 3.12 to find events for each amplitude separately, after which common events

across amplitudes are merged. In Figure 3.14 we show the results of an alternative
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strategy, where the five highest amplitudes are analyzed at the same time. This ap-

proach is better because the clustering procedure works better when there are more

trials in each cluster. Our analysis revealed the presence of four clusters (Figure 3.14

C, D), which led to 8 events, some of which were common to multiple patterns.

Figure 3.14: Spike patterns persisted across multiple amplitudes. (A) The rastergram
for the data shown in Figure 3.11A for amplitudes between 60% and 100% and during
the time segment between 650 ms and 850 ms. (B) The corresponding distance matrix
obtained for the q values selected by the heuristic. (C, D) The gap-statistic suggested
that there were four patterns. We show the (C) rastergram and (D) distance matrix
with the trials sorted according to their cluster membership. The numbers are the
cluster index. The gray vertical bands show the detected events that remained after
applying the merging procedure.

We emphasize that we used these experimental data sets for the sole purpose of

illustrating the analysis procedure. Our goal is to use this method in a future study to

determine how the precision and reliability, calculated as independent variables, vary

with the amplitude of the injected current waveform. Within the context of this goal we

do find that the procedure is less efficient for the lower amplitude data sets, where the

precision is reduced and the response is more sensitive to drifts, which was predicted
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Table 3.1: Experimental Information:
Data Number Normalized Max Offset Online
set of amplitudes amplitude gain

trials (nA)
050501 1c 18 0:10%:100% 0.1 0.03 0.5
050501 1d 51 0:10%:100% 0.1 0.15 0.5
082003 2c 45 0:10%:100% 0.1 0.15 0.8
082503 3b 41 0:10%:100% 0.1 0.15 1.0
090203 1b 21 0:10%:100% 0.1 0.15 0.9
090303 1b 29 0:10%:100% 0.1 0.15 0.9
091803 1c 40 0:10%:100% 0.1 0.15 2.2
082301 1c 22 20%:8%:100% 0.1 0.15 0.4
082401 2b 18 20%:8%:100% 0.1 0.15 1.0
012007 2b 36 0:10%:100% 0.1 0.15 5
012607 1d 40 0:10%:100% 0.1 0.15 4

based on the effect of reduced precision in the simulated data sets.

3.6 Discussion

We developed a four-step procedure with a few parameters to determine the event

structure of a set of spike trains. This procedure is broadly applicable. The histogram

needs to be peaked, which is indicative of events, and if there are overlapping peaks,

they should be due to multiple spike patterns. The procedure was tested using artificial

data with embedded spike patterns. It was also applied to spike trains recorded in

response to the same fluctuating current injected across multiple trials. The method

uncovered evidence for spike patterns in these data, the relevance of which is discussed

below. The procedure can also be applied to groups of neurons, for instance a set of

inhibitory and excitatory neurons. It can then be used to separate the inhibitory and

excitatory responses and determine the precision and relative lag, which is the subject

of experimental and theoretical studies (Buia and Tiesinga, 2006; Mishra et al., 2006;

Womelsdorf et al., 2007).
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Our results provide evidence for within-trial correlations (spike patterns) and thereby

confirm previous results obtained in various experimental preparations. For instance,

reverse correlation experiments were conducted to determine which stimulus features

generate spikes. For experiments where the stimulus was a current injected at the soma

they usually consisted of a hyperpolarization followed by a depolarization. The depth

and duration of the hyperpolarization depended on when the preceding spike occurred

(Jolivet et al., 2004; Powers et al., 2005), which means that the reverse correlation

reflects both the spiking history as well as the stimulus features. These effects were ef-

fectively captured using leaky integrate-and-fire (Pillow et al., 2005) or spike-response

model neurons (Jolivet et al., 2004, 2006). When the spike history and adaptation

effects were incorporated explicitly, these models could account for the precision and

reliability of in vitro neurons driven by current injection at the soma. In addition, with

the proper stimulus filter, these spiking models could also account for the response of

retinal ganglion cells driven by visual stimuli (Keat et al., 2001; Pillow et al., 2005).

These experiments show evidence for the same type of spike patterns as analyzed here

(see Figure 8 in (Pillow et al., 2005)) and in our previous work (Fellous et al., 2004;

Tiesinga and Toups, 2005).

Although the type of dynamics exposed here can be captured in terms of relatively

simple models, the analysis method presented here has a number of advantages, because

it does not depend on a fitting procedure, nor does it require knowledge of the explicit

stimulus waveform other than its starting time. The analysis method requires less data

than would be necessary to fit a model. This is an advantage for in vivo data obtained

from awake, behaving subjects, where the cell is only held for a limited amount of

time and there is no direct control of the current drive at the spike generator. In vivo

data also shows that the same neuron can change its spiking dynamics from regular

spiking to intrinsically bursting (Steriade, 2004), which is significant because it had
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been thought that these two spiking dynamics represent two different types of neurons

(McCormick et al., 1985). A consequence of this result is that the parameters of the

fit will change depending on cortical state, which is where the power of the clustering

method becomes clear. It will be able to detect the difference in dynamics and place

the spike trains in different clusters.

Recent studies as well as this study, show that neurons can become synchronized

to common input (de la Rocha et al., 2007; Ermentrout et al., 2008; Markowitz et al.,

2008; Tiesinga et al., 2008; Tiesinga and Toups, 2005). These neurons form an ensem-

ble, whose collective postsynaptic impact is enhanced because of synchrony (Salinas

and Sejnowski, 2000, 2001). In our data, the most precise and reliable responses are

obtained when the neurons produce one pattern, which is at the highest value for the

amplitude. Hence, this interpretation suggests that the single pattern state is best

from the viewpoint of information transmission. However, what state provides the

most information about the temporal fluctuations in the stimulus waveform? Reverse

correlation studies show that spikes are most often elicited in response to a transient

depolarization (Powers et al., 2005), that is: peaks in the stimulus waveform. When

because of the spike rate, which is determined by the afterhyperpolarization currents,

the neuron produces only a spike on half of the stimulus peaks, information about the

stimulus waveform could be lost. However, when there are two spike patterns, each

of which spikes on half of these peaks, all the peaks are represented in the ensemble

discharge. In the next Chapter, we show using this analysis that this can happen at

intermediate amplitudes, with the precision remaining high. The multiple spike pat-

tern case thus represents an optimal compromise with a relatively high precision for

information transmission and a good coverage of the temporal features of the stimulus

waveform.
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Chapter 4

Spike Patterns Encode Amplitude

or Offset Optimally Around

Response Bifurcations1

4.1 Abstract

We characterized how the trial-to-trial variability of spike trains in response to a somat-

ically injected aperiodic current varied with the amplitude and pedestal (offset) of the

stimulus waveform. Under these conditions, the neuron produced precise and reliable

spike trains. The spike times reflected specific features of the stimulus and they were

robust against changes in amplitude and offset, except at points termed bifurcation

points (BP), because there large shifts in the spike times were obtained in response to

small changes in the stimulus. We applied an unsupervised method to further analyze

the response at BPs, which revealed evidence for multiple spike patterns.

When the response obtained across trials is interpreted as the response of an ensem-

ble of similar neurons, precise spike times lead to synchronous volleys that are effective

1with Jean-Marc Fellous, Peter Thomas, Terrence J. Sejnowski and Paul Tiesinga



in driving postsynaptic neurons. The gain and sensitivity of a neuron is modulated

by the state of the network it is embedded in and can be represented as changes in

the amplitude and offset of the injected current. The in vitro experiment predicts

that the information about the stimulus time course that is encoded by spike volleys is

preserved across changes in gain and sensitivity, whereas the strength of the volleys is

modulated by network state. Although the reliability measured through conventional

means is reduced at BPs, the information about the stimulus time course is increased

because the volleys in each pattern contain independent information, which is faithfully

transmitted to postsynaptic neurons due to dendritic nonlinearities.

Taken together, the results predict a specific signature of multi-neuron discharge in

vivo due to BPs, which can be uncovered using the analysis methods applied here.

4.2 Introduction

Neural activity recorded in vivo is often analyzed in terms of the peristimulus time

histogram, which is a measure of the slow (50-500 ms) increases or decreases in firing

rate in response to stimulus onset (Richmond et al., 1987). Recordings at the sensory

periphery, such as in the retina or the lateral geniculate nucleus (LGN), indicate that

the spiking response can be tightly locked to stimulus features with a temporal resolu-

tion as high as 1 ms (Butts et al., 2007; Reinagel et al., 1999; Reinagel and Reid, 2000,

2002). Therefore, it is expected that cortical neurons also respond precisely, because

they receive inputs from this precise population of neurons (Kara et al., 2002; Kara

and Reid, 2003; Kara et al., 2000). Nevertheless, only a few experiments have reported

precise stimulus-locked responses (Bair and Koch, 1996; Buracas et al., 1998; Elhilali

et al., 2004). A hypothesis is that internally generated temporally coherent synaptic

inputs, which are uncorrelated with stimulus onset, reduce the precision of spikes rel-

ative to stimulus onset (Tiesinga et al., 2008). According to this hypothesis, cortical
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neurons in vivo can respond as precisely as measured in vitro. There have to be many

cortical neurons that receive common inputs, because there are 10-100 times more neu-

rons in the primary visual cortex than there are in the retina or LGN (Churchland and

Sejnowski, 1996), and each spiny stellate cell receives inputs from tens of LGN cells

(Ahmed et al., 1994) with a similar situation in barrel cortex (Bruno and Sakmann,

2006). This group of neurons with common input is referred to as a neural ensem-

ble, which may overlap with the anatomical concept of a minicolumn/microcolumn

comprised of neurons with approximately the same stimulus preferences and response

properties (Horton and Adams, 2005; Hubel and Wiesel, 1962; Lubke and Feldmeyer,

2007; Mountcastle, 1997).

We performed in vitro experiments to determine how information about the time-

course of the stimulus is encoded in the spike times and how it is modulated by the

strength of the stimulus. We interpret the results of these experiments in order to shed

light on the role of spike timing in vivo (de la Rocha et al., 2007; Ermentrout et al.,

2008; Markowitz et al., 2008; Reyes, 2003; Tiesinga et al., 2008; Tiesinga and Toups,

2005). The feedforward synaptic inputs a neuron receives in vivo are represented in

vitro by an aperiodic fluctuating current injected at the soma. The in vivo neuron

also receives recurrent inputs from the cortical network it is embedded in, which are

modulated by top-down inputs (Murayama et al., 2009) such as those representing the

effect of attention (Desimone and Duncan, 1995; Reynolds and Chelazzi, 2004). We

approximately represent these effects in vitro as a change in amplitude and offset of the

stimulus waveform.

The response obtained across multiple trials for different amplitudes or offset is in-

terpreted as the response of a neural ensemble. According to this interpretation precise

spike times (across trials) result in synchronous volleys of the neural ensemble (Ly and

Doiron, 2009; Tiesinga and Toups, 2005), which are effective in driving postsynaptic
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Figure 4.1: Spike timing in response to a fluctuating current is robust against changes
in amplitude and offset. We show the response of two Layer 5 pyramidal cells in a
slice preparation of rat prefrontal cortex, in (B) the amplitude (Aa) of the fluctuating
current was varied, whereas in (C) the current offset was varied (Ab). In each panel,
we plot (a) the rastergram, (b) the R-reliability (Schreiber measure with σ=3 ms, see
Methods) versus amplitude or current offset and (c) the spike time histogram across all
values of either the amplitude or offset. The stimulus waveform is shown for reference
at the bottom of sub-panel (a) and (c). Each line in the rastergram represents a spike
train obtained on a trial, with the x ordinate of each tick being the spike time. The spike
trains are ordered in blocks (delineated by horizontal lines) based on the amplitude or
offset of the injected current, expressed as a percentage, with the highest amplitude
or offset on top. Within each block the trials are ordered as they were recorded, with
the earliest trial at the bottom. The arrow in sub-panel b indicates the dip in the R-
reliability, which is related to the spike train dynamics highlighted by the corresponding
gray box in sub-panel a. This behavior is related to the presence of so-called bifurcation
points.
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cells both in vivo (Bruno and Sakmann, 2006) and in vitro (Gasparini and Magee,

2006). The strength of a volley depends on the number of cells in the ensemble that

produce a spike, which is related to the reliability across trials, and their degree of

synchrony, which is related to the precision. The postsynaptic effect of reliability is

different than that of precision. However these effects are hard to characterize, because

conventional measures of reliability represent a combination of precision and reliability

(Mainen and Sejnowski, 1995; Schreiber et al., 2004). To address this issue we devel-

oped an event-based analysis, using which the across-trial spike trains are represented

as a set of events. The events can then be characterized in terms of their occurrence

time, precision and reliability and it can be determined how these quantities varied with

amplitude and offset. In the following we will use precision and jitter interchangeably

to refer to the temporal resolution of spike times. Numerically, the precision is equal

to one over the jitter and it is expressed in 1/ms.

We report on three key results. First, we find that spike trains change with ampli-

tude in such a way that the information about the stimulus time course is preserved,

which also means some information about the amplitude is only reflected in the trial-to-

trial variability and thus needs to be reconstructed based on multiple trials. Second, the

general behavior as a function of drive parameter (amplitude or offset current) can be

characterized using the concept of spike patterns and bifurcation points (BPs). Spike

patterns are within-trial spike correlations, which are due to afterhyperpolarization

currents (Powers et al., 2005) and other slower currents activated by action potentials.

At BPs the spike times change rapidly in response to a small change in parameter

value. Multiple spike patterns diversity are in some sense optimal for representing

information about the stimulus time course. We find that the diversity is highest for

the intermediate amplitudes used in our experiments, which is a consequence of the
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presence of BPs. Third, we utilize an event-based analysis that makes it easy to au-

tomatically analyze spike train data. The main advantage of the event-based analysis

is that it does not rely on fitting a specific parametric model for the neural dynamics

given the stimulus (Jolivet et al., 2004, 2006; Keat et al., 2001; Pillow et al., 2005),

rather it models the data directly.

4.3 Methods and Experimental procedures

General experimental procedures and stimulus generation and experimental design were

the same as those described in Sections 3.3.2 and 3.3, respectively.

4.3.1 General analysis procedures

Spike times were detected from recorded voltage traces as the time the membrane

potential crossed 0 mV from below. The firing rate was the number of spikes recorded

during a trial, averaged across all similar trials and normalized by the duration of the

trial in seconds.

In the rastergram, each row represented a spike train from a different trial. Each

spike is represented as a tick or a dot, with the x-ordinate being the spike time and

the y-ordinate being the trial number. Often we group trials together based on the

stimulus amplitude or re-order trials based on which pattern they belong too. This is

indicated in the corresponding figure caption.

The spike time histogram is an estimate for the time-varying firing rate. It was

obtained by dividing the time range of a trial into bins (typically 1 or 2 ms wide) and

counting the number of spikes that fell in each bin across all trials. The bin count was

normalized by the number of trials and by the bin width in seconds. The latter was

to assure that a bin entry had the dimensions of a firing rate, Hz. The histogram was
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subsequently smoothed by a Gaussian filter with a standard deviation equal to 1 bin

size. The spike-triggered average (STA) was obtained by for each spike selecting the

25 ms stimulus segment prior to the spike and average across all spikes.

Events were detected using the procedure summarized below. At the end of this

procedure, all spikes were either assigned to an event or were classified as noise. The

event-reliability is the fraction of trials on which a spike was observed during that

event, the event-jitter is the standard deviation of the spike times belonging to the

event. The event-precision is the inverse of the event-jitter. For a given condition

(amplitude, offset or initial current step) the reliability, precision and jitter are defined

as the event-reliability, event-jitter and event-precision averaged across all events.

The R-reliability is calculated based on all spike times without detecting events.

The spike trains are first transformed into a continuous waveform, where each spike is

convolved with a Gaussian distribution with a standard deviation σ (Schreiber et al.,

2003; Wiskott et al., 1997). The cosine of the angle between the two waveforms, when

considered as vectors, is computed as the inner product between the waveforms of trial

i and j, normalized by the product of the square roots of the inner product of each

trial with itself. This quantity is a number between 0 and 1 (the waveforms are positive

valued) and is called the similarity Sij. The reliability estimate R is the mean of Sij

across all distinct pairs (i, j). Intuitively, the inner product measures the degree of

overlap between spike times: the closer two spike times are, the larger the overlap and

thus their contribution to the inner product. The parameter σ sets the time scale of the

reliability measure and determines which spike times between the pairs are considered

overlapping. For σ approaching zero, all spike times are considered different (except

when the spike trains are identical to machine precision), hence R=0. For σ much

larger than the trial length, all spikes overlap and R=1. In the first case, the emphasis

is on precise spike times; in the second case, the emphasis is on the global amount of
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spikes (spike rate). We used a more efficient method for calculating R by summing, for

each pair of trials (i, j), the following expression across all spike pairs (k, l) that are

separated by less than six σs, Sij ∝
∑

k,l e
−(ti

k
−tj

l
)2/4σ2

(here tik is the kth spike on the

ith trial and for simplicity the normalization was omitted, see (Kruskal et al., 2007) for

details).

4.3.2 Calculation of the VP distance

Refer to Section 3.3.4.

4.3.3 Overview and goal of the event finding method

Refer to Section 3.4.1

4.3.4 Calculation of entropy and mutual information between

classifications

Refer to Section 3.3.6.

4.3.5 Simulation experiments

The neuron was modeled as a single compartment with Hodgkin-Huxley-type voltage-

gated sodium and potassium currents and a passive leak current (Tiesinga and Jose,

2000; Wang and Buzsaki, 1996). The equation for the membrane potential of the model

neuron is:

Cm
dV

dt
= −INa − Ik − IL + Iinj + Cmξ (4.1)
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where IL = gL(V − EL) is the leak current, INa = gNam
3
∞h(V − ENa) is the sodium

current, IK = gKn4(V − EK) is the potassium current, Iinj is the injected fluctuating

current, which is the same on each trial and Cmξ is a noise current that is different on

each trial. The values for the maximum conductance and reversal potential are listed

in Table 5.1. The gating variables are m, n, and h and they satisfy the equation

dx

dt
= ζ(αx(1 − x)βxx).

Here the label x stands for the kinetic variable, and ζ = 5 is a dimensionless time scale

that can be used to tune the temperature dependent speed with which the channels

open or close. The rate constants are:

αm =
−0.1(V + 35)

e−0.1(V +35) − 1
, βm = 4e−(V +60)/18

αh = 0.07e−(V +58)/20, βh =
1

e−0.1(V +28) + 1

αn =
−0.1(V + 34)

e−0.1(V +34) − 1
, βn = 0.125e−(V +44)/80.

and the asymptotic values of the gating variables are:

x∞(V ) =
αx

αx + βx

where x stands for m, n, or h. We made the approximation that m follows the asymp-

totic value m∞(V ) instantaneously (Wang and Buzsaki, 1996). The noise ξi in the

current of neuron i is chosen such that < ξi(t) >= 0 and < ξi(t)ξi(t
′) >= 2λδ(t− t′)δij.
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On each integration time step, the noise was drawn independently from a uniform dis-

tribution between −12λ/dt and 12λ/dt, where dt was the time step. For Figure 4.5 we

used λ = 0.00025 mV 2/ms, whereas in Figure 4.7 we used λ = 0.0001 mV 2/ms (low

noise) and λ = 0.025 mV 2/ms (medium noise). For Iinj we either used the same 1050

ms long fluctuating drive as in the experiment (Figure 4.5, amplitude between 0 and

1, offset 0.2 µA/cm2), but without the constant depolarizing current pulses preceding

the fluctuating drive in vitro; or we used a sinusoidal drive with time-varying frequency

(illustrated in Figure 4.7).

The initial values of the membrane potential at the beginning of the simulation were

set to a fixed value, usually -70 mV. The gating variables were set to their asymptotic

stationary values, x∞(V ), corresponding to the starting value, V , of the membrane

potential. The differential equations were integrated using a second-order Runge-Kutta

method with a time step of dt=0.05 ms (Gerald and Wheatley, 1999; Press et al., 1992).

4.4 Results

Our goal was to determine how the amplitude and current offset of a fluctuating drive

was reflected in the structure of neural spike trains. Therefore, a current comprised of a

constant current step (offset) and a fluctuating drive was injected in the soma of a layer

5 pyramidal cell in a slice of rat prefrontal cortex. The fluctuating drive was exactly

the same on each trial, but for the first experiment we used eleven different amplitudes

(the factor by which the fluctuating drive was multiplied before it was added on top of

the current step), which were expressed as percentages. We performed experiments on

8 different cells with between 18 and 51 trials per amplitude. For 8/10 cells we used 0%

to 100% in steps of 10%, for 2/10 cells we used 20% to 100% in steps of 8%. Because

the injected waveform was prepared off-line and stored in a file, at the time of recording

we could only adapt the overall gain to the properties of the neuron we recorded from.
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The overall gain (between 0.4 and 5) was chosen such that the neuron produced spikes

for the lowest value of the amplitude, which was achieved for 8/10 cells.

In Figure 4.1B we show rastergrams for one example cell, with at the bottom of

the panel the template of the injected current waveform (without the current step

and scaling factor). The rastergram consists of blocks of constant amplitude, with the

highest amplitude on top. Within each block the trials are in the order they were

collected, with the earliest at the bottom. In the rastergram (Figure 4.1Ba), events are

visible as lines of spike alignments that appear for low to intermediate amplitudes and

become sharper when the amplitude is increased further. Overall this graph suggests

that both the precision and the reliability improve with amplitude. The trial-to-trial

variability was characterized using the Schreiber measure (R-reliability, see Section

4.3.1 - General Analysis Procedures) with a σ value of 3 ms (Schreiber et al.,

2003). Simply put, spikes in two different spike trains with a time difference of less

than 3 ms are considered coincident. Note that this measure does not distinguish

between changes in reliability and changes in precision, for that an event-based analysis

is necessary. Overall, R increased with amplitude (Figure 4.1Bb), but there were dips,

one of which is indicated by the arrow. The model analysis performed below indicates

that this is due to a so called bifurcation point (BP).

The spike times do not vary much with amplitude. To demonstrate this we deter-

mined the spike time histogram across all amplitudes (Figure 4.1Bc), which displays

a sequence of peaks. These peaks were broader than those obtained using only the

spike trains for the highest amplitude, whereas the responses for the lowest few ampli-

tudes were not strongly stimulus-locked and were imprecise. However, for the latter,

because the spike times were spread out, they contributed predominantly to the flat

background rather than broadening the peaks. To interpret these results, consider a

neural ensemble comprised of different neurons for which the effect of the feedforward
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drive varies in effective strength. For instance, because the number of synaptic in-

puts with these temporal dynamics is different across neurons, or because neurons have

different densities of leak and other voltage-gated channels that lead to variability in

the input conductance (Koch, 1997). The in vitro experiments show that despite this

diversity the ensemble would produce volleys that are effective in driving postsynaptic

neurons and transmitting information about the time course of the input.

For the second set of experiments (Figure 4.1C), the current offset (before the overall

gain factor) was varied between 0.05 and 0.3 nA in 10 equal steps, while the amplitude

of the stimulus waveform was held constant. We presented 7 such stimulus sets to 5

different cells and recorded the responses on 17 to 36 trials, with overall gain factors

between 2.7 and 3. The overall behavior was similar: precise spiking was obtained

across current offsets (Figure 4.1Ca and c), the reliability measure R increased with

amplitude (Figure 4.1Cb) and also displayed a dip (arrow in 4.1Cb). There were also

differences. First, the firing rate increased faster than for the case where the amplitude

was varied. This is because the overall level of depolarization increased, whereas for

increasing amplitude not only the peaks got higher, the troughs also got deeper, which

meant that some spikes would appear and other spikes would disappear. Second, for a

nonzero firing rate the neurons immediately locked, which was indicated by the higher

reliability (we excluded the first current offset, for which the neuron only spiked on a

few trials) compared to the amplitude case. In the low-current-offset blocks the first

spike times seem to drift with current offset, but they actually shift to earlier events.

The events visible in the multi-amplitude rastergrams (Figure 4.1) persist across

amplitudes. This means that the precision, reliability and mean spike time of events

can be compared across amplitudes (see Subsection 3.3.3). One strategy would be

to find events for each amplitude, after which events common across amplitudes are

merged. In Figure 3.14 we show the results of an alternative strategy, where the five
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highest amplitudes are analyzed at the same time. This approach is better because

the underlying clustering procedure works better when there are more trials in each

cluster. Our analysis revealed the presence of four clusters (Figure 3.14C, D), which

led to 8 events, some of which were common to multiple patterns.

Because there were more amplitudes (five) in the data set than there were patterns

(four), a given pattern had to persist across multiple amplitudes. To further study this

we re-plotted the rastergram in blocks of constant amplitude, but within each block

the trials were ordered based on the pattern they expressed (Figure 4.2A). The pattern

composition which patterns were present on what fraction of the trials varied across

amplitude and was quantified in Figure 4.2B. When the presence of the second pattern

(Figure 4.2B, line 2) increased, the fraction on trials on which the first pattern was

present decreased (Figure 4.2B, line 1). Hence, the reliability of events in the second

pattern increased (black ellipses in Figure 4.2A), whereas the reliability of events in

the first pattern decreased (gray ellipses in Figure 4.2A). Hence, changes in pattern

occupation account for the, at first glance counterintuitive, decrease in reliability with

amplitude.

The diversity of patterns present for a given amplitude is quantified using the en-

tropy of the pattern distribution (Figure 4.2C). For this data, the entropy was maximal

at a specific amplitude (see Section 3.3.6, arrow in Figure 4.2C). Across data sets and

segments a decrease in entropy with increasing amplitude was the more robust observa-

tion, because for higher amplitudes only one pattern survives. This behavior is relevant

for the amount of information that can be extracted about the temporal dynamics of

the injected current and is discussed below.

During extracellular recordings in vivo the neurons membrane potential is not ac-

cessible, which is unfortunate because it would provide information about the dynamics

of excitatory and inhibitory inputs to the neuron (Monier et al., 2003). An important
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Figure 4.2: Decreasing spike time reliability was associated with changes in the pattern
occupation. (A) Rastergram of the clustered data shown in Figure 3.14A. Each block
(separated by thick black lines) corresponds to a different amplitude, with the lowest
amplitude at the bottom and the highest amplitude at the top. Within each block,
the trials are ordered based on their cluster membership. The clusters are separated
by thin dashed lines. Two events are highlighted: the ones in the black ellipses, whose
reliability increased with amplitude and the ones in the gray ellipses, whose reliability
decreased with amplitude. (B) The pattern occupation (or probability) for a given
amplitude is the fraction of trials on which that pattern is obtained. We show the
pattern occupation as a function of amplitude for the four patterns that were detected,
as indicated by the numbers in the graph. (C) The diversity of patterns observed for
a given value of the amplitude is quantified as the entropy of the pattern distribution.
The entropy as a function of amplitude has a peak at 80% (arrow), indicating that the
pattern diversity is largest for that amplitude.
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question is what aspects of the membrane potentials are reflected in, or can be recon-

structed from, the detected spike times. To address this issue we analyzed recordings

where on each trial the same waveform with the same amplitude was injected because

for these experiments the most trials were available. For these experiments, the fluc-

tuating waveform was extended to 1700 ms and was preceded by a constant current

offset of 200 ms (in addition to 50 ms zero current at the start of all current injections).

Because these datasets were taken for a different experiment, the initial current offset

took eleven different values, the influence of which is discussed below. We injected

this drive on nine experiments using eight cells, with between 10 and 35 trials (which

means 110 to 385 trials when ignoring the current offset) and an overall gain with values

between 0.9 to 4.7.

We applied the spike pattern analysis to all the segments in a representative data

set. In Figure 4.4A, within each segment the trials were ordered according to the pat-

tern they expressed in that segment. The spikes on a row of the rastergram most likely

correspond to different trials, because the trial ordering on each segment was deter-

mined independently using the clustering algorithm. Patterns correspond to within-

trial correlation between spike times. We determine how long this correlation persists

by determining how well the pattern expressed on a trial during one time segment pre-

dicts which pattern is expressed in a preceding or following segment. In Figure 4.4B,

the trials are ordered in each segment based on the pattern they were on in the last

(fourth) segment (indicated by the asterisk). This panel shows that even though a

group of trials expressed the same pattern during the fourth segment, the same group

expressed a mixture of patterns during segment 3. The association between different

segments can be expressed as the normalized mutual information between the pattern

classification of a trial in two segments (IN , see Section 3.3.6). Because it is normalized,

the maximum value is one, which is obtained if the classifications are identical. The IN
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between the classification in segment 4 and that in segments 3, 2 or 1 was 0.31, 0.006,

or 0.039, respectively.

Figure 4.3: Spike patterns corresponded to voltage patterns. The single-amplitude data
set was divided into four time segments. (A) Segment-by-segment rastergrams. In each
segment trials were ordered according to the cluster membership in that segment. The
clusters are separated by horizontal dashed lines, whereas segments are indicated by
vertical lines. Because the trial order varies from segment-to-segment, spikes on the
same row but in different segments are not necessarily obtained in the same trial. (B)
Rastergram with trials in each segment ordered based on their cluster membership on
the fourth segment (asterisk). At the bottom of A and B the current waveform is
repeated for reference. There was a 200 ms long constant current step (arrow), whose
amplitude took eleven different values (only one is shown). . . .

We further analyzed the three patterns uncovered in the time interval between 1500

and 1900 ms. For each pattern, the voltage traces were averaged across all corre-

sponding trials and the standard deviation was used as an estimate for the trial-to-trial

variability. The mean voltage traces were not only different because the neurons spiked
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Figure 4.4: . . . (continued) (C-E) The analysis procedure found 3 spike patterns in
the fourth segment (between 1500 ms and 1900 ms), labeled 1 to 3. In each of the
panels C-E, we show (top) the voltage traces averaged across all trials expressing that
pattern (the y-axis covers the range from -65 to -35 mV) and (bottom) the current
waveform together with a rastergram where the trials were ordered based on the cluster
membership in the fourth segment. The spikes were shifted to the left by 12 ms so that
they were approximately aligned with an upswing in the injected current. In (C) the
gray bands indicate the plus or minus two standard error range for the black curve.
The arrow in (D) indicates where hyperpolarization from a spike exposes differences in
the membrane potential of the three different patterns.
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at different times, but also because the conductances associated with the afterhyper-

polarization following the spike altered the response to the current injection (Figure

4.4E, labels 1 to 3). The spikes reflected periods where the injected current had a large

positive slope, but each pattern was triggered by a different subset of these upswings

(Figure 4.4E, bottom). Once a spike was produced the neuron did not spike during an

otherwise viable upswing shortly thereafter, even though it had produced a spike there

on other trials during which it expressed an alternative pattern. For instance (Figure

4.4E, bottom), on trials labeled 1, the neuron did not spike in response to the upswing

that caused the neuron to spike on trials labeled 2.

This is not the complete story because there can be correlations that persist across

an entire trial, which are not visible in the membrane potential unless they are un-

masked by a deep hyperpolarization. For each pattern expressed on segment 4, we

averaged the corresponding voltage traces across the entire duration of the trial. For

clarity, we only show three time intervals (Figure 4.4C to E). In the first interval there

is a small difference in the mean membrane potential (Figure 4.4C), which has dis-

appeared at t=1000 ms (Figure 4.4D), but reappears after a deep hyperpolarization

(Figure 4.4D). This difference then leads to three clearly distinct voltage patterns in

the last interval (Figure 4.4E). Often, whether or not a neuron spikes at a given upswing

determines which pattern a neuron is on for a hundred milliseconds or more, a time

scale comparable to fixation between saccades (McIlwain, 1996). Our hypothesis is that

the spiking probability depends on the state of the neuron, which may not necessarily

be visible in the membrane potential. The state on a given trial could be correlated

with the height of the depolarizing step that preceded the fluctuating current or it

could be due to nonstationarity, which means it depends on whether the trial is at the

beginning or end of the experiment. The normalized mutual information was calculated

between the trial number and the pattern on segment 4 (the degree of nonstationarity)
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and between the height of the offset and the pattern, for which we obtained the values

IN=0.13 and 0.11, respectively. This analysis shows that only a small fraction of the

variability can be explained by these two factors.

Figure 4.5: Bifurcation points were observed in model simulations for amplitudes at
which the spike count changed. We show the (A) R-reliability (σ=1 ms) and (B)
rastergram as a function of amplitude. The dip in reliability indicated by the black and
gray arrow in (A) corresponds to the bifurcation in the black and gray circle in (B),
respectively. We plot (C) mean spike count and (D) standard deviation of the spike
count across trials versus the amplitude. The gray curve is the R-reliability replotted
from panel A, the full range for R, 0 to 1, is represented in the graph. Peaks in
the reliability, indicated by the double-headed arrows, correspond to (C) plateaus in
the spike count, for which (D) the trial-to-trial variability in the spike count is small.
The spike trains were obtained from simulations of the WB model neuron (Tiesinga and
Toups, 2005; Wang and Buzsaki, 1996), driven by the same drive as used experimentally.

We performed simulations using the Wang-Buzsaki (WB) model neuron (Wang and

Buzsaki, 1996) in order to clarify the link between spike patterns, bifurcation points and
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the reduced reliability measured in terms of the R-reliability. We simulated 50 trials

for each of 101 different amplitudes between 0 and 100% (the stimulus was normalized

so that the mean was zero and the standard deviation was one). Panel A of Figure 4.5

shows the reliability curve, which was smoothed by a three-point running average, and

panel B shows the corresponding rastergram with matching y-ordinates. For clarity we

only used half of the trials and half of the amplitude values in the rastergram. The

R-reliability generally increased with amplitude but it had dips. Two of the dips are

highlighted by the arrows and correspond to the spike train features inside the circle of

matching color in Figure 4.5B. Two spike times enter the gray circle for low amplitudes

and three leave at higher amplitudes. This is a bifurcation because the dynamics

changed rapidly for small changes in the parameter value. Inside the circle there are

fuzzy clouds of spikes that correspond to multiple patterns for a given amplitude. As

the amplitude increased, the fraction of patterns with two spikes decreased, whereas

those with three spikes increased. A similar transformation takes place within the black

circle, where three spikes enter and four spikes leave.

This relationship was further examined by comparing the mean spike count and

the trial-to-trial variability of spike count to the modulation of the reliability (Figure

4.5C and D). Local maxima in the reliability corresponded to plateaus in the spike

count, for which the variability of the spike count was minimal. A similar behavior

was obtained when the current offset was varied, with the same two differences as

observed in experiment. First, the increase in firing rate was higher with offset than

with amplitude. Second, the reliability started out high even for low firing rates. By

contrast, for zero or low amplitudes, there was nothing to lock to, and a low R-reliability

similar to that in response to a current step was obtained.

Computational models give insight into what are bifurcation points and how they

are generated. Consider, for instance, a leaky integrate-and-fire neuron. A constant,
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above threshold current drive causes a spike train with regular interspike intervals,

because the membrane potential increases over time, crosses the spike threshold, after

which a spike is generated and the membrane potential is reset and the process starts

over again. Previous analyses have shown that jitter is proportional to the rate of

change of the membrane potential at the threshold (Cecchi et al., 2000), which is in

turn proportional to the current offset. This noise stability also predicts the stability of

the spike times against parameter changes. For a fluctuating drive, the spike times are

generated by upswings in the current drive, yielding a specific pattern of spike times.

Usually there are more upswings than there are spikes produced by the neuron. Thus,

when one of the upswings is missed, spikes are produced at a new sequence of upswings

a new pattern. Nevertheless the spikes in the new pattern still reflect the stimulus.

Consider the case where one upswing brings the neuron close to threshold, but

when it does not actually cross it. With a small increase in amplitude or current offset,

the neuron will cross threshold, and a big change in the response has occurred: a

bifurcation. This sensitivity to parameter changes also implies a sensitivity to noise.

On some trials the noise can induce a spike, whereas on others it prevents a spike,

which means that at least two patterns are produced. For a leaky integrate-and-fire

model neuron a bifurcation is discontinuous because of the discontinuous voltage reset

after a spike, but for Hodgkin-Huxley type models, such as the WB model used here,

it is continuous.

Near a bifurcation in the presence of noise there is, at the single neuron level,

confusion about which amplitude gave rise to the observed spike train. This confusion

does not exist across multiple trials or an ensemble: the fraction of trials on which the

below-bifurcation spike-pattern is observed will decrease as the amplitude is increased.

Each precise event is due to, and thus represents, an upswing in the stimulus wave-

form. Away from BPs, there is only one spike pattern and the neuron spikes with a

101



Figure 4.6: Information about the time course of the stimulus waveform is improved
at bifurcation points because of the presence of multiple spike patterns. Data is from
an example model neuron described in (Tiesinga and Toups, 2005; Wang and Buzsaki,
1996). (A) We show the rastergram for a short time segment across 100 trials for a
(bottom) low-noise and (top) medium-noise model neuron. The noise level refers to
the magnitude of a white noise current that varies from trial-to-trial relative to the
amplitude of the repeated fluctuating current waveform (shown as a thin solid line on
top of each rastergram). For low noise, the neuron spiked only at six events, whereas
for medium noise there were additional events. (continued) . . .
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Figure 4.7: (continued) . . . (B) We calculated the reliability and jitter for each event for
the entire stimulus duration (1100 ms). The open circles represent the low-noise, and
the asterisks represent the medium-noise result. The gray-filled region represents the
combination of jitter and reliability for which a putative postsynaptic neuron would
generate a spike. (C) The spike-triggered average obtained across the entire stimulus
period for (solid line) the medium-noise neuron and (dotted line) the low-noise neuron.
(D) The stimulus waveform reconstructed using the (dotted line) low-noise and (solid
line) medium-noise spike trains was compared to (gray solid line) the actual stimulus
waveform. We used an event-based reconstruction, where each extracted event con-
tributed equally to the reconstruction regardless of reliability and jitter, as long as the
reliability exceeded 5%. For clarity the three curves are offset from each other.
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high precision and reliability. However, when there are more upswings than there are

spikes, information about the time course of the stimulus is lost. By contrast, near

a BP the dynamics is more noise sensitive and multiple spike patterns are obtained

with non-overlapping event times, each of which provides information about a stim-

ulus feature. To illustrate this point, we drove the model neuron with a sinusoidal

waveform with a frequency that fluctuated over time. We found a BP and compared

the response at this point under two circumstances: low noise and medium noise. In

this way we could compare responses at the same amplitude with a similar, but not

exactly the same, spike rate. In the low-noise case there were six events during the

time interval displayed in the graph (Figure 4.7A, bottom), but for the medium-noise

case there were additional events with a reduced reliability and precision (Figure 4.7A,

top). We applied the event-based analysis to the entire simulation time interval (1100

ms) and determined for each event the reliability and precision (Figure 4.7B). We also

determined the spike-triggered average (STA) for both cases (Figure 4.7C). Using all

detected events with a reliability exceeding 5% and the measured STA, we reconstructed

the stimulus waveform (Figure 4.7D). The medium-noise spike trains, with their multi-

ple spike patterns, yielded a better reconstruction than the low-noise case with a single

spike pattern.

To interpret these results, consider the response of a neuron to a volley with a

specific number of spikes (reliability times the size of the ensemble) and jitter. In order

for an event to contribute to a reconstruction it should be detectable by a postsynaptic

neuron. For a subthreshold background drive, the volley will result in an output spike

when the reliability and precision is high enough. An example of the effective range is

indicated by the gray shading in Figure 4.7B. Another constraint is that each volley

should generate only one output spike. That is, no matter how deep you are in the

gray shaded area, only one spike should be generated. Preliminary model studies at
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the single compartment level indicate that this is hard to achieve, except when there

is a correlated inhibitory input that follows the excitatory volley at an appropriate

delay. Recent studies using two-photon uncaging of glutamate show that dendritic

action potentials may be an appropriate mechanism (Gasparini and Magee, 2006),

which requires studying the impact of synchronous ensembles using multicompartment

models.

4.5 Discussion

Previous studies have shown that neurons in the slice preparation produce precise and

reliable spike trains in response to fluctuating currents injected at the soma (Bryant

and Segundo, 1976; Mainen and Sejnowski, 1995). Furthermore, arguments have been

presented that suggest neurons in vivo can respond as precise and reliable as in vitro

(Tiesinga et al., 2008). This raises the possibility that information is encoded in precise

spike times, that this information can be transmitted from neuron to neuron and that it

is utilized by the nervous system. We addressed the following two issues by conducting

in vitro experiments and simulating computational models. First, to what extent is

information about the time-course of the stimulus conserved under common modes of

response modulation. Second, is there an optimal operating regime for representing

this information in ensembles of uncoupled, similarly tuned neurons.

We find that precise spike times – events across trials or synchronous volleys in

a neural ensemble are generated by upswings in the fluctuating drive. Because up-

swings remain upswings when the amplitude or the offset is changed, precise spikes

will still represent information about those upswings. However, how many and which

upswings are represented in the spike trains could change. We find that these changes

are discrete, which means that event times change little with changing amplitude or

offset, until a bifurcation point is encountered at which they suddenly change. Because
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of afterhyperpolarization currents and other slower currents, a sudden change at one

spike time leads to changes in subsequent spike times. Near BPs spike trains are more

noise sensitive and the R-reliability is reduced. We mean by noise the component of the

neurons input that varies from trial-to-trial. In the context of models this corresponds

to an additional pseudorandom current, with a different seed on each trial (Tiesinga

and Toups, 2005). Noise sensitivity is often considered detrimental to coding. However,

here it is beneficial at the ensemble level, because near BPs multiple precise patterns

are generated, each of which provides information about a different set of upswings.

Furthermore, because across a range of amplitudes/offsets a range of spike patterns is

obtained, each representing upswings in the stimulus, the overall spiking activity is still

precise and informative.

The bifurcation structure is determined by stimulus characteristics. This is clearest

when comparing the structure obtained in response to a periodic drive to that for

an aperiodic drive. For the former, the density of bifurcations is highly non-uniform:

there are large ranges without any bifurcations separated by a range full of bifurcations

(see Figure 3A in Tiesinga (2004) for an example). The bifurcation cause changes

in the spike trains for the entire time range. In contrast, for an aperiodic drive, for

a given parameter, there is almost surely a bifurcation, because a random drive will

come close to threshold at some time during the infinite stimulus presentation (see

Figure 4.5B). However, a large hyperpolarization or depolarization can often reset the

neuron. Because such events are expected quite regularly during in vivo dynamics

(Haider and McCormick, 2009), the bifurcation structure should only be considered for

finite intervals, just as studied here experimentally. Taken together, this implies that

dynamics at BPs are likely to be relevant in vivo.
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4.5.1 Implications for cortical coding

In experiment the response of a single neuron, uncoupled from other neurons, was

measured across multiple trials. However, the overall goal was to shed light on the

dynamics of neural ensembles in vivo. This raises two issues discussed below: what

is the nature of the neural ensemble and how is the information represented in neural

ensembles?

There are two alternative hypotheses about how information is represented in an

ensemble. The first hypothesis holds that slow modulations (50-500 ms) in the fir-

ing rate code for stimulus properties. This firing rate can be estimated by averaging

across all neurons in the ensemble, from which the time course of the stimulus can be

reconstructed. The second hypothesis is that ensembles of neurons produce precisely

timed spikes, which lead to synchronous volleys that are effective in driving postsynap-

tic neurons. Experimental results, reviewed in (Tiesinga et al., 2008), suggest that a

combination of these two strategies is at work at the level of the cortex. First, volleys

represent the fast fluctuations in the inputs (either sensory related or internally gener-

ated). Second, slow modulations change the number of volleys and the number of spikes

per volley. This does not change the information about the temporal fluctuations, but

alters the strength with which they are expressed.

Physiological studies provide support for this idea, because they show that spatially

clustered, temporally precise synaptic inputs are very effective at eliciting reliable and

precise spikes via dendritic action potentials (Gasparini and Magee, 2006), in a way

which is decoupled from the spikes generated by slow input modulations. Furthermore,

this response has an all-or-none character. If, for instance, 50 spikes in a 2 ms long

interval are enough to elicit an output spike, then increasing the number of spikes or

their precision will generally not increase the number of spikes produced in response

to this volley. Any volley meeting the minimum requirement will elicit a spike and
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will be able to transmit information about the upswing that generated it. Hence,

when there are multiple precise spike patterns, the ensemble provides more information

than a single pattern, despite the reduced reliability at the single neuron level. This

would suggest that it is beneficial for the nervous system to keep ensembles close to

bifurcations so that they are most informative.

Ensembles of similar neurons are a theoretical construct. However, there is experi-

mental evidence that supports the functional existence of ensembles. First, in a large

number of animals there are cortical micro/minicolumns (Horton and Adams, 2005;

Hubel and Wiesel, 1962; Lubke and Feldmeyer, 2007; Mountcastle, 1997) composed of

neurons with similar stimulus preferences. Second, recent in vivo recordings in barrel

cortex (Poulet and Petersen, 2008) show that under certain circumstances nearby neu-

rons have correlated membrane potentials, indicating that they receive similar inputs.

Furthermore, their spikes are preceded by large, sharp deflections of the membrane

potential, indicating the presence of synchronized volleys. Third, because there are less

thalamic neurons providing input to the primary sensory cortex than there are cortical

neurons, convergence occurs (Kara and Reid, 2003), which means that cortical neurons

must receive common inputs. Nevertheless, even neurons in the same cortical column

are diverse in terms of their morphology, input conductance and so on. Our analysis

shows that the temporal information is robust across a range of parameter values and

can be combined into precise volleys even across a moderately heterogeneous ensemble.

4.5.2 Limitations of the experimental study.

The experimental results presented here apply to uncoupled neural ensembles receiv-

ing feedforward inputs. This clearly is an approximation to in vivo dynamics because:

(1) There are recurrent synaptic connections that generate coherent activity in var-

ious frequency ranges and across different spatial scales (Buzsaki, 2006); (2) There

108



is feedforward inhibition that follows feedforward excitatory volleys at a small delay

(Cruikshank et al., 2007) and (3) There are recurrent loops between the different cortical

layers (Callaway, 1998; Douglas and Martin, 2004; Foss and Milton, 2000). Neverthe-

less, at the soma/spike generating zone the sum of these inputs leads to a fluctuating

drive. This fluctuating drive consists of fast fluctuations riding on top of slower mod-

ulations. We show here that spike timing is generated by these fast fluctuations and

modulated by slow fluctuations. Experiments show that the relative phase between

gamma oscillations in two brain areas can modulate the effectiveness of communication

(Womelsdorf et al., 2007). Hence, an important issue for further study is how fast

feedforward fluctuations interact with internally generated oscillations in the gamma

frequency range.

In the in vitro experiments the drive is injected as a current at the soma. According

to our interpretation this represents the excitatory and inhibitory synaptic inputs that

are spatially distributed across the soma and dendritic tree. Nevertheless, somatic

current injection can not account for the nonlinear integration that takes places in the

dendrites (Poirazi et al., 2003; Polsky et al., 2004). Furthermore, since the conductance

effect due to opening of synaptic channels is not included in the current drive, its effect

has to be included separately. We have done this by varying the amplitude and offset.

This is motivated by model analyses of the effects on the firing rate versus current

(f-I) characteristic. Adding a constant conductance shifts the entire f-I curve of a

leaky integrate-and-fire neuron to the right, thus acting as a hyperpolarizing current

(Holt and Koch, 1997), which can be accounted for by a current offset. Synaptic

inputs add a fluctuating conductance, which in models can change the gain of the f-I

multiplicatively and increase the impact of other fluctuations. In vitro experiments

show random background activity produced by a network can cause changes in the

gain or sensitivity to other inputs (Chance et al., 2002; Fellous et al., 2003). This
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not exactly the same as changing the amplitude, but shares some commonalities in its

effect.

The offset and amplitude approximate a number of effects. First, because neurons

in the ensemble are not identical, there is diversity of offset and amplitude values

across the ensemble. Our results show that despite this diversity, the ensemble can

produce synchronous volleys. Second, when the network state changes, as it might

do in response to top-down modulation, the overall offset and amplitude changes. In

vivo experiments have documented corresponding changes in gain and sensitivity in

response to top-down activation of cortical networks (Reynolds and Chelazzi, 2004;

Reynolds and Heeger, 2009).

Interestingly, the in vitro experiment across trials maybe a better approximation of

a neural ensemble on one trial than the response of one in vivo neuron across multiple

trials because the drive component that varies from trial-to-trial has a large shared

component among different neurons in the ensemble (Deweese and Zador, 2004).

4.5.3 Analysis method

Precision and reliability are independent properties of neural dynamics, although they

may be modulated in a correlated fashion. There is both a need for an easy way to

characterize the overall variability as well as for parsing out the reliability and precision

separately. A reliability measure such as the Schreiber measure (Schreiber et al., 2003)

is appropriate for the former, because it tells you that there is less overlap between

pairs of spike trains, but it does not directly tell you whether this is due to a reduced

reliability or precision or whether there are multiple patterns. Because reliability and

precision are event properties, the event structure needs to be extracted for the latter.

The problem is that distinct events may be overlapping, so they cannot be easily

separated. To see this more clearly, consider sampling from two Gaussian densities
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with a mean of -0.5 and 0.5, respectively, and both with a standard deviation of 1. It

is not possible to say to which of the two distributions a sample point at 0 belongs to.

However, by using the spiking history the overlapping events can be separated, which

means using the fact that there are spike patterns. Hence, we utilized an analysis that

used the knowledge of spike patterns. Because this analysis procedure only depends on

a few well-defined parameters, for which heuristics are available, it is reproducible from

lab to lab. It is described in Chapter 3. Briefly, it determines the temporal resolution

at which the spike patterns can be optimally distinguished; it then finds the number of

patterns; subsequently it determines the events for each pattern and it finally merges

events common to multiple patterns.

4.5.4 Future studies

New technologies utilizing light-activated channels and pumps together with the read-

out of neural activity via two-photon microscopy, offers the opportunity to alter and

follow neural ensembles in vivo (Cardin et al., 2009; Han et al., 2009; Sohal et al.,

2009; Zhang et al., 2007a,b). This makes it possible to move neural ensembles away

or towards BPs. Furthermore, in vitro, at the single neuron level, rapid spatially-

distributed glutamate uncaging (Gasparini and Magee, 2006; Iyer et al., 2006) can

be used to determine how neurons respond to the feedforward inputs generated by a

neural ensemble and how these inputs interact with pharmacologically generated fast

oscillations. Taken together, these technologies offer the opportunity to test in vivo

predictions about the functional role of neural ensembles positioned at BPs.
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Chapter 5

Mechanisms for Stimulus Selection

at the Single Pyramidal Cell

5.1 Abstract

Humans are able to selectively process different aspects of the sensory universe around

them. This ability, called attention, requires that the brain have a mechanism to

rapidly modulate the neural circuits which process sensory information depending on

the current goals of the organism. Although some mechanisms of neural computation

are well understood, the exact method by which the brain accomplishes attention mod-

ulation is not well understood. Here we explore two methods which operate at the

level of a single pyramidal cell which allow for the selection of one of two signals, both

of which stimulate the neuron simultaneously. In the first, synapses are clustered into

sub-domains of the dendrites, and inhibition to sub-domains is adjusted to facilitate

stimulus selection. We find that selection is difficult to accomplish in our model by

manipulating inhibitory firing in sub-domains of the dendrites.

The second mechanism uses the γ oscillations, which are known to be experimen-

tally associated with attentional modulation. In this method, the phase spike times



Table 5.1: Synaptic Parameters
Type/Param. τsyn (ms) E (mV) gsyn (mS)
Excitatory 3 0 0.00034
Inhibitory 11 -85 0.00044486

in incoming feed-forward excitation representing sensory signals is adjusted relative to

the phase of an ongoing inhibitory γ oscillation local to the modulated neuron. We

find that by adjusting the phase of an input, its contribution to the output firing rate

can be strongly modulated. Hence, only phase adjustments are required to selectively

enhance or inhibit the representation of a signal in the output of the neuron.

5.2 Multicompartmental Model

A geometrically simplified, biophysically inspired multicompartmental model of a layer

2/3 pyramidal cell originally described by Traub et al. (2003) was used for all multi-

compartmental simulations in this study. Modeling was performed in the NEURON

environment Carnevale and Hines (2006) (see Chapter 2). The Traub model was ini-

tialized with default settings as per its ModelDB entry. All simulations were performed

with a timestep of .025 ms.

5.2.1 Synapses

Synaptic inputs were provided using simple exponential synapses (ExpSyn in NEU-

RON). Spike times were generated using the Matlab software environment and loaded

into a custom neuron MOD which triggered ExpSyn activity. Synapses were either ex-

citatory or inhibitory, with the parameters for each enumerated in Table 5.1. Synaptic

parameters were adjusted in order to produce the expected relationship between input

and output firing rates, but the final values were within the range of experimental

results (Pare et al., 1998).
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In a large simulations synapses become the dominant computational bottleneck -

the number of dynamical variables associated with 10,000 synapses (even very simple

ones) is much larger than the approximately 60 compartment model itself. Anatomical

estimates indicate that a single pyramidal cell in the cortex can receive on the order

of 10,000 synapses (the model in this dissertation has 18,000) (DeFelipe and Farinas,

1992). It is both computationally inefficient and redundant to simulate each synapse

individually. The characteristic length of membrane potential dynamics in the Traub

model is around 25 - 50 µm (see Subsection 2.2.3). One branch of the basal dendrites

contains around 650 excitatory synapses (DeFelipe and Farinas, 1992) in about 200 µm

of dendrite, giving a synaptic density of 81 synapses every 25 µm. Accordingly, the

number of actual excitatory synapses simulated by the model was reduced by a factor

of 50. Each synapses was activated with spike times from 50 “virtual” presynaptic

neurons. Inhibitory synapses make up around 15-20% of the synapses on the cell – there

are substantially fewer inhibitory synapses. In order to maintain a uniform distribution

of synapses in the dendrites, the number of actual inhibitory synapses was reduced only

by a factor of 10. The calibration of the model was repeated for different scaling factors

of inhibition and excitation. Changes in the neuron’s response for different scaling

factors were small, and could be adjusted for by altering the maximum conductances

of both excitatory and inhibitory synapses. All results come from modeling with the

number of excitatory synapses scaled back by a factor of 50 and inhibitory synapses

scaled by a factor of 10.

5.2.2 Calibrating the Spontaneous Background Activity

One goal of this study was to examine selection in the presence of reasonable cortical

“background” activity. What constitutes cortical background activity, however, is con-

troversial, if it is even well defined at all. Experiments indicate that excitatory neurons
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in the cortex may rest at around 1 Hz and inhibitory neurons at around 5 Hz, so these

values were used for the purposes of calibration (Fujisawa et al., 2008). They define

both the input and output rate of the neuron, since if the cortex is resting, we expect

our neuron’s firing rate to equal the background excitatory firing rate of 1 Hz. This was

accomplished by adjusting the conductances of the excitatory and inhibitory synapses

until the output firing rate was 1 Hz. There are many pairs of values ge and gi for

which the outpu firing rate is 1 Hz, (these tend to lie on a line in ge versus gi space

such that the ratio between ge and gi is about ge/gi ≈ 0.76. One point on this line was

selected (see Table 5.1) by finding the point where the membrane potential fluctuations

were between 5 and 10 mV (excluding spike times). These parameters were used for

all results reported here.

5.2.3 Generating Spike Times

Spike times driving the synapses were generated in Matlab using correlated Poisson

processes with a given rate. Oscillations were then added to the spike trains (when

appropriate) as described after this Section. Spike trains are not independent between

all synapses on a section of a neuron. In order to simulate correlations between spike

trains arriving at synapses, we used an algorithm which, given a desired firing rate and

parameter dictating correlation, produces a given number of spike trains.

Begin with the number of synapses required nsyn, the desired firing rate f , the

correlation factor 0 < cf <= 1, the reliability r and jitter σ of events. The algorithm

begins by producing a number of seed trials equal to the ceiling of nseed = nsyncf . Then,

nseed spike trains are generated from a Poisson Process with rate f
r
. Each process serves

as the seed for the ceiling of nseed

cf
spike trains. For each such train the seed train is

visited spike by spike. Whether the seed spike appears in the generated train depends

on the reliability, and the output spike is shifted by a value drawn from a Gaussian
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with the given jitter. All generated spike trains are gathered together, shuffled, and

then nsyn are taken as the generated spike trains. For cf = 1, the output spike trains

are all correlated (drawn from a single “type” of spike train, with given precisions and

reliabilities for each event). When cf < 1
nsyn

, then each spike train is independently

generated. All simulations in this study use a cf = 4/10. This value was selected in

order to increase the firing rate while keeping synaptic conductances within reasonable

ranges, since correlated spikes are more likely to produce output spikes.

In cases where there were time-varying firing rates, the above algorithm was used,

but the stimulus was generated in blocks of different firing rates and then the output

spikes were concatenated.

5.2.4 Generating phase-locked spike times

Phase locking of spikes was achieved by first generating either constant or rate-variable

spikes via the above method and then locking those spikes to specific phases with a

given jitter. Each spike in a data set was visited in turn, moved to the nearest phase

(specified with a frequency and phase pair) and jittered by an amount drawn from

a Gaussian distribution with a specified phase locking value. Since spikes are rarely

moved further than one period ± the phase locking jitter, for small locking jitters,

the resulting spike train retains the firing rate variation of the input spike trains at

frequencies below than the oscillation frequency.

5.2.5 Distribution of synapses in model

For the purposes of distributing synapses in the model, the neuron was divided into

17 logical sections. The Traub Model geometry is illustrated in Figure 5.1. Each log-

ical section has a group of inhibitory and excitatory synapses distributed uniformly

throughout the section using custom written Matlab code. Logical sections may be
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made up of several NEURON sections, in which case the uniform distribution is nor-

malized by the area of each section, so that the number of synapses per unit area is

constant.

Eighteen-thousand (18,000) synapses were modeled in this study. Eight-six (86)

percent were excitatory and the remainder (14 percent), were inhibitory. The exact

number and distribution of synapses onto a layer 2/3 pyramidal cell in the visual cortex

of any particular animal is unknown. Therefore, general observations about pyramidal

cells were used to distribute the synapses (DeFelipe and Farinas, 1992). Thirty-three

percent of the synapses were distributed onto the basal dendrites (both inhibitory and

excitatory). The remaining 66% of the synapses were placed onto the apical trunk and

apical tufts. This distribution is consistent with the observation that the largest density

of synapses are located on the apical trunk (DeFelipe and Farinas, 1992). Excitatory

synapses were excluded from the somatic section, while inhibitory synapses were not

(DeFelipe and Farinas, 1992).

5.3 Stimulus Selection by localization of inhibitory

and excitatory synaptic activity

The output firing rate of a neuron increases when its excitatory input increases, and

decreases when its inhibitory input increases. In the simplest case, the firing rate of the

neuron can be approximated as a weighted, linear sum of the excitatory and inhibitory

firing rates activating its synapses (with the weight on the inhibitory rate necessarily

negative). In real neurons, however, synapses are located throughout the dendrites,

and specific locations in the dendrites may be enervated by synapses which follow a

common signal (Petreanu et al., 2009). What effect does this spatial clustering have

on the relationship between the level of inhibitory and excitatory input and the output
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Figure 5.1: Geometry of the Traub Model (Traub et al., 2003). Eighteen-thousand
synapses were distributed throughout the dendrites of the Traub model: one third in
the basal dendrites, another in the apical tufts, and a third on the trunk. The ratio of
number of inhibitory to excitatory synapses was 0.16. Firing rates to each basal branch
were varied for this study. Each such branch has 650 excitatory and 105 inhibitory
synaptic inputs.
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Figure 5.2: Typical distribution of synapses (1/10 of the total synapses are shown).
Excitatory (right) and inhibitory (left) synapses are plotted at their locations on the
Traub model. There are 18,000 synapses in total, so only a tenth are plotted here for
visual clarity. During actual modeling, only 1/50th of the excitatory and 1/10th of the
inhibitory synapses were placed on the neuron. Each was driven at 50 and 10 times
the desired firing rate.
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firing rate? In particular, we aim in this Section to discover if any such effect can be

used to enhance the ability of a neuron to select one from many incoming signals.

We examined the feasibility of stimulus selection at the single pyramidal cell level

by simulating the effect of location specific inhibitory and excitatory activity. In this

scenario, feed-forward, excitatory (FFE) inputs representing a given signal are clustered

in sub-domains of the basal dendrites Figure 5.1 and 5.3. Inhibition is also assumed to

be distributed in a stimulus-specific manner, although the exact relationship between

the level of activation of the inhibitory and excitatory synapses at a given location

is different depending on the specific scenario being investigated (these are described

below and in Figure 5.3).

We begin by examining the effect of moving the location of excitatory and inhibitory

constant firing rate “signals” relative to one another in the basal dendrites and exam-

ining the effect on the output firing rate.

The simplest scenario we can examine for modulating stimulus selection is illus-

trated in Figure 5.4. This mechanism applies inhibition to the location at which the

signal we wish to block arrives (Figure 5.4A). Ideally, this local inhibition blocks only

the excitation it is specific to (Figure 5.4B), allowing other excitatory drives to “pass

through” the neuron unaffected (Figure 5.4C). To shed light on this process, we com-

pare the effect of inhibition on a single dendrite on the firing rate of the neuron when

excitation is colocated (COL) on that dendritic branch versus when it is located on an-

other dendritic branch (that is, contralocated, CON). In particular, if excitatory firing

above the background rate is added to a single dendritic branch, how much colocated

inhibition is necessary to return the neuron to the baseline firing rate? How does this

amount of inhibition effect the neuron when the excess excitation is absent? How does

it effect the neuron when the excess excitation is located on another basal branch? The

answers to these questions will inform the models of selective mechanisms examined
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Figure 5.3: Three synaptic placements strategies for stimulus selection. In each case,
the inhibitory and excitatory populations of presynaptic neurons follow either S1 or S2.
In the COL (A) case, excitation and inhibition following a given signal are colocated.
In the CON (B) case, they are located on opposite dendritic branches. In the HOM
(C) case, synapses are distributed throughout the basal dendrites. In each case an
inhibitory population’s firing rate is reduced as a way of selecting either S1 or S2. This
population is indicated by a starburst pattern (see text).
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below.

Figure 5.4: A naive approach to stimulus selection: inhibit the location where the
excitatory stimulus arrives. Three conditions are illustrated (A-C). In the top two
conditions, excitation arrives on the left most dendrite. In the “Pass” condition (A),
there is no inhibition (above background) and the excitatory input produces a response.
In the “Block” condition (B), inhibition is applied to the location of the stimulus we
wish to block, with the intention of preventing the excitation from reaching the soma
and producing spikes. The hope is that excitation applied to the right-most dendrite
would be unaffected (C).

In Figure 5.5 the output firing rates for the model neuron are shown in 8 conditions,

described below. The left-most wide, light bar indicates the background firing rate con-

dition (BG). All other conditions are additions to this basic simulation. In the BG case,

each of the eight basal dendritic sub-branches receive 2 Hz of excitatory activity in their

650 synapses (see Section 5.2.5 for the synaptic distribution scheme). The remainder

of the excitatory synapses (10,400) are attached to the neuron’s apical dendrites and

trunk and were activated homogeneously at 1 Hz. The inhibitory synapses, of which

there are 2520 distributed onto the basal and apical dendritic arbors, are activated at 5

Hz. In order to minimize the effect of the specific location of excitatory and inhibitory

synapses in the basal dendritic branches, which were all similar in length, the same seed
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was used to distribute synapses in all eight basal dendritic branches. Spike times for

both excitatory and inhibitory populations were generated in groups for each dendritic

branch. We tuned the excitatory inputs so that an output of 20 Hz in the BG case was

attained in order to allow for stronger modulation of the output firing rate.

Figure 5.5: Inhibition can “cancel” the effects of excitation, but its effect is not local to
the dendritic branch to which it is applied. Eight experimental conditions are shown in
the Figure, where each rectangle’s height represents an output firing rate. Beginning
with the white rectangles from left-most to right-most these conditions are: background
(BG) where each of the 8 dendritic branches receives 5 Hz inhibition and 2 Hz exci-
tation; left-only (L) where the left-most dendritic branch receives an additional 6 Hz
of excitatory activity; the right-only case (R), where the right-most dendritic branch
receives this additional 6 Hz; and in the right and left case (R+L), where this excess
excitation is delivered to both dendrites. The gray bars indicate the same conditions
with an additional 35 Hz inhibitory signal delivered to the right-most dendrite. The
effect of inhibition is to lower the output firing rate to the BG case in the R case, and
to lower rate to the L case in the R+L case, but in the other cases the effect of inhi-
bition is still apparent. If the effect of inhibition was isolated to the branch on which
its synapses were located, the BG and R cases would be unaffected by inhibition on L,
but this is not the case.

The bar graph (white bars) in Figure 5.5 shows responses to the background case

described above and to three other conditions. In the Left (L) condition, an additional

Fe,L = 6 Hz of excitatory activity is delivered to the synapses on the left-most branch
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of the basal dendrites, raising the output firing rate to 40 Hz. In the Right (R) case,

the same increase is applied to the right-most branch, also leading to an increase in

output firing rate to 40 Hz. In the Left plus Right case (L+R) both inputs are added

at the same time. In this case the output firing rate was about 54 Hz, less than twice

the R or L case alone (≈ 94 Hz). These results show that the neuron responds equally

to excitation of the same magnitude on either dendrite, but responds sub-linearly to

the presence of two inputs at once.

How much inhibition is necessary to return the neuron’s output firing rate to the

BG rate? Does it matter whether this inhibition is colocated or contralocated, and if

so, how and to what degree? We addressed this question by first using simple bisection

(Arfken, 1985) to obtain the amount of colocated inhibition needed to lower the output

firing rate to the BG case. This value turns out to be a constant multiple of the

excitatory firing rate (for rates between 5 and 40 Hz), so that F Fout→BG
i,R ≈ 5Fe,R. The

result of applying this amount of inhibition (approximately 30 Hz) to the R dendritic

sub-branch results in the firing rate being decreased to the BG rate as indicated by the

bar graph (filled bars) in Figure 5.5.

What happens in the other cases? In particular, when the “counterbalancing” inhi-

bition is located on R but the extra excitation is located on L (that is, the contralocated

case; CON), what is the relative effect on the output rate compared to the colocated

(COL) case? The filled bars in Figure 5.5 show the output firing rate in the four con-

ditions, but with the “counterbalancing” inhibition located on R. These results show a

substantial reduction in the output firing rate for all conditions, indicating that while

an appropriate amount of inhibition can cancel a given amount of excitation in the

firing rate regime. Nevertheless, the firing rate is primarily determined by the total

balance of inhibition and excitation because the location of the two components of the

input at these firing rates is less important.
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In our model of stimulus selection (to be described below), the total level and

inhibition and excitation may be “unbalanced” as the selective mechanism increases or

decreases the amount of inhibition associated with a signal. Under these circumstances,

does it matter where the “unbalanced” inhibition is in relation to the various excitatory

inputs? In order to more closely examine the effect of location specific inhibition on

the firing activity of the neuron when inhibition and excitation are not balanced we

examined the Fout (output firing rate) versus Fe,R (input excitatory firing rate) curve

under different inhibitory firing rates in the COL and CON conditions (Figure 5.6).

We found that for some combinations of firing rates contralocated inhibition was

more effective than colocated inhibition at reducing the output firing rate. Two different

views of the effect of COL versus CON inhibition are shown in Figure 5.6. The top-most

panels (A and B) show the output firing rate of the neuron against the input rate of

a single dendritic group located on the left-most dendritic branch of the neuron. Each

line, starting from the highest (and darkest) and going to the lowest (and lightest),

shows the Fout versus Fe curve for increasing inhibitory firing rates. The location of

inhibition relative to excitation (COL, Figure 5.6A versus CON, Figure 5.6B) effects

the shape and modulation of the Fout versus Fe curve. The modulation of the firing

rate is more pronounced for the CON case, and saturates for large inhibitory firing

rates. COL inhibition shifts the curve down rather than changing its shape, and does

not appear to saturate at these firing rates. Viewing the data as a function of the

level of inhibition, rather than excitation (Figure 5.6C, D, and E) illustrates that the

difference between COL and CON firing rates is largest when the excitatory input is

large (40-50 Hz), but eventually vanishes for large enough inhibition. These differences

can be used to enhance the effectiveness of stimulus selection by balancing excitation

and inhibition, as described below.

Given that for most firing rates, the output rate of the neuron depends only on
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Figure 5.6: Contralocated inhibition decreases the output firing rate Fout more effec-
tively than colocated inhibition for some firing rates. (A) and (B) show the output
firing rate versus input firing rate for a variety of inhibitory firing rates applied to
either the left-most dendritic sub-branch (where the excitation is) in (A, COL) or to
the right-most dendritic sub-branch (opposite to the excitation) in (B, CON). The in-
hibitory firing rate is encoded by the color of each line, with lighter colors indicating
higher firing rates. In (C)-(E) three cross-sections of this data (at Fe,R = 10, 30 and 55
Hz, indicated by dashed vertical lines in (A) and (B)) are shown (error bars indicate
standard deviation of the firing rate across 30 trials), with inhibitory rate on the x-axis
and firing rate on the y-axis. At low excitatory firing rates (C) the difference between
CON and COL inhibition is not significant, but at higher rates the difference increases
- (D) and (E).
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the total level of excitation and inhibition and not on the location of the synapses of

either, the expectation is that stimulus selection should be attainable by selectively

unbalancing inhibition and excitation without utilizing any effect of location.

Consider a neuron on which excitatory and inhibitory inputs are dynamically bal-

anced, such that each signal arriving on a dendrite is canceled by a similarly varying

inhibitory signal (weighted by c1 or c2):

Rout(t) = Re,L(t) − Ri,L(t) + Re,R(t) − Ri,R(t) + Rrest

= Re,L(t) − c1Re,L(t) + Re,R(t) − c2Re,R(t) + Rrest,

where we make the simplifying assumption that inhibition and excitation have the same

effect on the output firing rate per unit input firing rate. When c1 and c2 are equal to

one, the output firing rate is just Rrest,

Rout(t) = Re,L(t) − Re,L(t) + Re,R(t) − Re,R(t) + Rrest

= Rrest,

If, however, one of these constants is lower than one, the balance of excitation and

inhibition is upset, and the associated excitatory drive appears in the output (with

c1 = .25 and c2 = 1):

Rout(t) = Re,L(t) − .25Re,L(t) + Re,R(t) − 1Re,R(t) + Rrest

= .75Re,L(t) + Rrest.
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In other words, selection is accomplished by decreasing the coefficient relating the

excitatory and inhibitory firing rates which represent or follow the incoming signals,

unbalancing inhibition and excitation. In terms of the connectivity of the cortical

circuit, feed-forward connections arriving on the neuron from the previous cortical

area or layer carry the signal directly and correspond to Re,L or Re,R above, while

the inhibitory neurons which receive similar feed-forward excitation, and immediately

project inhibition onto the local pyramidal cells, are represented by Ri,L or Ri,R. The

fact that the excitatory and inhibitory firing rates are related by a constant represents

the fact that the inhibitory population are being driving by the same signal that drives

the pyramidal cells (Vogels and Abbott, 2009).

The selective ability of three different strategies (illustrated in Figure 5.3) are char-

acterized in Figures 5.8 and 5.7. In the first strategy (Figure 5.3A), inhibition is

colocated, which we will continue to call the COL case. In the second (Figure 5.3B),

inhibition is contralocated (CON) and in the final case (Figure 5.3C), both excitation

and inhibition are spread throughout the basal dendrite of the neuron (HOM case).

Regardless of which strategy is examined, selection is always achieved by lowering the

appropriate inhibitory firing rate.

A one second long sample of the input firing rates for the three cases is shown in

Figure 5.9. Each panel is divided horizontally between selecting S1, whose excitation

arrives on the left side, and selecting S2, whose excitation arrives on right side. In the

COL and CON cases, Figure 5.9A & B, excitation and inhibition are divided between

the Left dendritic branch and the Right dendritic branch (left and right columns, re-

spectively). In the COL case, the shape of excitation and inhibition is the same on

a given dendrite (Figure 5.9A). When selecting the input arriving on a dendrite, the

firing rate of the inhibition there is decreased, unbalancing the inhibition and allowing

the excitatory signal to produce changes in the neuron’s firing rate. In the CON case,
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Figure 5.7: CON inhibition produces slightly better correlations between selected input
and output, while minimizing correlations between the output and unselected input.
In each case (A, COL; B, CON; C, HOM) the output rate is plotted against the input
rate S1 or S2 (left, right sub-panels, respectively) when selecting either S1 or S2
(light circles, dark circles, respectively). Dark or light shading indicate the remaining
standard deviation (selecting S2 or S1, respectively) when the linear trend relating
input and output is subtracted. In Panel D, bar graphs show the regression coefficients
between either input and the output (same color codes as above), relative to either S1
or S2 (as labeled). For these plots firing rates were divided by a constant c = std(r∪−r)
(see text) where r is the set of firing rates. Error bars represent the confidence intervals
on the linear regressions (see text).
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Figure 5.8: CON inhibition produces slightly better selection. Output firing rates for
100 ms bins of time are shown for the COL (A), CON (B) and HOM (C) cases. Outputs
and inputs are shown for the cases selecting S1 or S2 (top & bottom graphs in each
panel respectively). Input rates are shown as empty bars, output rates are plotted as
filled bars.
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the inhibitory firing rates have their locations reversed: the right-branch inhibition has

the same shape as the left-branch excitation and vice-versa (Figure 5.9B). In this case,

to select the signal represented by the excitation on the left-most branch, the inhibition

on the right-most branch is scaled back. In both cases, the inhibition which follows the

selected signal is reduced. In the HOM case, synapses throughout the basal dendrite

reflect only the total amount of inhibition and excitation. Selection is affected in the

same way, however, as in the COL and CON cases: the inhibition which cancels the

selected signal is reduced.

The CON inhibition strategy produces the best relationship between input and

output firing rates, shown in the results plotted in Figure 5.8 and 5.7. By comparing

the output firing rate to the input signals, S1 and S2, this difference can be visualized

as a correlation between the input and the selected and unselected output (Figure 5.7).

In the scatter plots, points lying on the line y = x indicate a strong correlation between

input and output, while points distributed uniformly in the plot indicate the absence

of correlation. The linear regression coefficients (calculated using Matlab’s regress

function on S1, S2 and the output firing rate, adjusted so that distribution of the

firing rate and its negative values has a standard deviation of one), are shown in the

lower portion of the figure.

Although the HOM selection case shows a better correlation between selected input

and output, negative correlations coefficients for unselected inputs indicate that the

unselected signal is “leaking” into the output – when the unselected signal is high,

the output tends to be low and vice-versa. In an ideal situation, the unselected signal

would not affect the output firing rate. The CON case produces good correlation

between selected input and output, and the unselected input’s coefficient is near zero,

indicating no inverse correlation in the output signal. Taken together, these results

indicate that using a CON strategy for stimulus selection leads to a slightly cleaner
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Figure 5.9: Reducing the firing rate of inhibition responding to a particular signal
“selects” that stimulus. The inhibitory and excitatory input firing rates are plotted in
blue and red, respectively for the COL (A), CON (B), and HOM (C) cases. For the
COL and CON case, firing rates are location dependent, but all inputs are spread out
evenly in the HOM case, therefore only one plot is shown. In the HOM case S1 and
S2 are plotted as dashed lines.
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representation of the desired output from the neuron, although the difference between

COL and CON strategies is not statistically significant (p-value = .23, null hypothesis

that selection is equal for both COL and CON, p-values calculated by using a mixing

term with linear regression with Matlab’s regstats function (Matlab, 2009)).

CON selection is most effective at lowering the firing rate because it reduces the

standard deviation of the membrane potential at the soma. A neuron’s firing rate can

depend on both the mean membrane potential and its standard deviation (Tiesinga

and Jose, 2000). Figure 5.11 shows views of the somatic membrane potential and

standard deviation thereof along with the output firing rate of the neuron. A simple

conceptual model of a neuron is useful in understanding these results. Such a model

is illustrated in Figure 5.10. In this figure, a “membrane potential” (drawn from a

Gaussian distribution) is plotted as a function of time. Each time it crosses the spiking

threshold (at 1 unit), a spike is recorded (for simplicity the refractory period is ignored

here). To increase the firing rate of the neuron we can either increase the mean of

the membrane potential or increase the standard deviation - either approach produces

more threshold crossings, and therefore more spikes. Decreasing one parameter can, for

some values of the other, “cancel out” the effect of changing the second value. Going

from panel C to B in Figure 5.10, the membrane potential has been increased, but

the standard deviation has decreased, resulting in a net decrease in firing rate. From

B to D the standard deviation, and therefore firing rate, increases. In summary, a

neuron needs to have the right combination of mean membrane potential and standard

deviation to fire at a high rate.

When firing rates are large, locating inhibition on an unexcited dendrite (CON)

produces a lower standard deviation of the somatic membrane potential than inhibition

located on an excited dendrite (COL) (Figure 5.11B, E). This is accompanied by a lower

firing rate in the CON case, despite the fact that the mean of the membrane potential is
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Figure 5.10: Firing rate depends both on the mean and standard deviation of a neuron’s
membrane potential. A schematic “voltage trace” is plotted as a function of time, with
moments for which it crosses the spiking threshold marked by black bars at the top of
each panel. Moving down the figure, the standard deviation of the membrane potential
is increased, while moving from right to left shows an increase in the mean of the
membrane potential. Both trends lead to an increased firing rate as more points cross
the spiking threshold. Note that with appropriate combinations of mean and standard
deviation, a neuron can be very depolarized (high membrane potential) but have a very
low firing rate because the standard deviation is so small that there are few threshold
crossings (B). Only when both the membrane potential and the standard deviation
thereof are large, as in D or F, are high firing rates found.
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Figure 5.11: CON inhibition lowers somatic standard deviation, and therefore firing
rate, better than COL. In the left column A, B and C, the membrane potential, its
standard deviation, and the firing rate (respectively) are plotted as a function of location
asymmetry in both excitation and inhibition. Along each y-axis the excitatory firing
rate on the left-most dendrite decreases while the firing rate on the right-most dendrite
increases. On each x-axis, the inhibitory firing rates similarly vary. The total excitatory
and inhibitory firing rates are constant for all points on the grid. In D, E and F, the
same values are examined for non-constant sums of excitation and inhibition. On the
x-axis the excitatory firing rate minus the inhibitory firing rate is plotted, while the
y-axes show the same values as in A, B and C respectively. Dark points show the CON
case, light points the COL case, as indicated in the legend.
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similar for both cases (Figure 5.11A). Figure 5.11A shows the mean membrane potential

as a function of the “effective input rate”, that is Fe,R−Fi,R in the COL case or Fe,R−Fi,L

in the CON case. When the excitation is smaller than the inhibition, the COL case

tends to have the lower average membrane potential. This does not translate into a

lower firing rate (Figure 5.11F), however, because at these input rates the standard

deviation of the somatic membrane potential is much larger than that in the CON case

(Figure 5.11E). CON inhibition lowers firing rate more effectively predominantly due

to the effect it has on the membrane potential standard deviation, rather than on the

mean.

The key to understanding the increased effectiveness of CON inhibition over COL

or HOM is to recognize that the modulation strategy we are employing depends on

canceling inputs to the neuron until one of them is “selected.” In the hypothetical

null state, all the incoming signals are canceled by similarly varying inhibition, and

so the output firing rate of the neuron does not vary from the background. When

a signal is selected, the inhibition associated with it is decreased. Becaus inhibition

cancels a signal more effectively when it is located on another dendritic sub-branch, it

is advantageous to locate the canceling inhibition for a signal on other branches of the

neuron than the one it arrives on, particularly since that inhibition, by virtue of the

fact the COL inhibition is less effective at filtering out a feed-forward signal, will less

effectively modify whatever feed-forward signals are arriving at its location. Changes

to the level of inhibition in the CON strategy have a larger effect on the cancellation

of the signals they follow than they do on the signals they are colocated with, which

is what makes it a good strategy. In an optimal world, changes to the inhibitory firing

rate blocking S1, for instance, would not change the degree to which S2 is passed or

blocked. Although that ideal is not attainable in the electrically compact neurons we

examined here, contralocating inhibition is slightly better in this respect than colocated

136



inhibition, producing the improved correlations and rejections we see in the comparisons

of input and output firing rates (Figures 5.8, 5.7).

In conclusion, we find that although a neuron’s total firing rate is largely deter-

mined by the total amount of inhibition and excitation present in the cell, regardless

of location, that a CON inhibitory/excitatory layout can improve selection for some

firing rates over either a HOM or COL strategy.

Figure 5.12: Firing rate depends on both standard deviation and mean of the membrane
potential – the CON strategy leads to lower standard deviations. Standard deviation
appears on the Y axis, mean on the X axis. Size and lightness represent firing rate
(see side panel). Note that for the same mean membrane potential, the CON case has
consistently lower firing rates and standard deviations.

5.4 Selection by inhibitory oscillation and excita-

tory phase-locking

The attractiveness of modulating ongoing oscillations as a means of stimulus selections

follows from several observations. The first is that signals from the outside world are not
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predictable in time – the pitcher in a baseball game does not cue the batter before he

throws the ball. Ongoing oscillations provide a brain or area-wide clock to synchronize

and select stimuli. Additionally, neural oscillations are a persistent element of neural

systems, and have been experimentally observed to correlate with attention and arousal

(see Chapter 2).

The method of utilizing oscillations for selection examined in this Chapter is il-

lustrated in Figure 5.13. Rather than using specific locations to encode whether a

stimulus ought to be passed or not passed, this strategy uses specific times (relative

to an ongoing γ oscillation) to encode the same information. In the location specific

strategy, inhibition and excitation were located at the same position in the dendrites,

and to inhibit a specific signal, inhibition located with that signal was altered. In the

oscillatory case, excitation is instead located at specific times, and to select a signal,

either the phase of the excitatory signal or the phase of the inhibitory signal is adjusted

to cause signals to arrive at either the high or low point of inhibition in the γ cycle (at

the level of the single neuron, shifting the excitatory phase is indistinguishable from

shifting the inhibitory phase by the same amount, in the opposite direction).

In order to characterize the effectiveness of this method of stimulus selection, simu-

lations were carried out to examine the effect of arrival phase and input firing rate on

the output rate and jitter of the model neuron. These results are illustrated in Figure

5.14.

Inhibitory inputs (firing at 10 Hz) to the basal dendrites were entrained to a 40

Hz γ-style oscillation as described in Section 5.2.3. All excitatory synapses fired spikes

drawn from a Poisson process with a rate of 3 Hz, except for the 650 excitatory synapses

on one dendritic sub-branch of the basal dendrites, which were also entrained to a 40

Hz oscillation. The phase of the inhibitory oscillation was varied in 10 steps between

0 and 2π. Both inhibitory and excitatory spike times were aligned to their particular
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Figure 5.13: Stimulus selection by oscillation and phase locking. In this diagrammatic
representation of stimulus selection by oscillation, each presynaptic source of excitatory
input (illustrated in “V2” on the lower part of the figure), carries information about
a signal. Spike times coming from each neuron are synchronized at a particular phase
relative to a “reference” γ oscillation. The ongoing gamma oscillation at the post-
synaptic cell prevents the neuron from responding to an input unless the spikes arrive
at the correct phase. Selection is accomplished by aligning the phases of the pre- and
post-synaptic neurons so that excitation is able to produce a response. “Unselected”
or inhibited signals arrive at unfavorable phases with respect to the post-synaptic γ.
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Figure 5.14: Relationship between incoming rate and phase and output firing rate and
jitter. (A) shows typical input spike trains for the experimental case, along with the
firing rate in the lowest panel. (B) shows the output firing rate as a function of both
input rate (color) and phase. (C) shows the output firing jitter (calculated using the
jitter measure described in Subsection 4.5.3. When excitation has no phase locking,
the firing rate is radially symmetric (not shown).
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phases with a 3 ms jitter. Output firing rates were measured in a sliding window 800

ms wide, aligned with the phase of the inhibitory oscillation. Jitters were calculated as

described in Section 4.5.3, on the spikes contained in the sliding window.

FFE phase locking can substantially modulate the output firing rate, the gain of

the firing rate, and the jitter of the output spikes (Figure 5.14). Just below a phase

of 2π, the output firing rate is almost unaffected by changes in the input firing rate.

At this phase, spikes are arriving at the peak of the inhibitory volleys which make up

the inhibitory gamma oscillation. Jitter shows a similar effect - when the excitation

arrives at a non-preferred phase, the spikes that are produced have high jitter. At the

point 180◦ away from the lowest firing rate (approximately 6
5
π), the Jitter is ∼2 ms.

Taken together, this implies that locking the incoming inputs to a particular phase

can produce effective modulations of the output firing rate and jitter, while preserving

information about the incoming rate on at least very long time scales.

Real stimuli have temporal structure, and locking feed-forward spikes to particular

phases interferes, at least in principle, with the temporal information encoded in the

variations of the feed-forward firing rate. The typical timescales of visual stimuli,

however, are below the γ range, and the integration time of retinal neurons is also slower

– suggesting that it is possible to produce stimuli which preserve temporal variation

at frequencies below gamma while still spiking at times restricted to certain γ phases.

In this scheme, the temporal variations of the firing rate encodes multiple pieces of

information - low frequencies encode the (slowly varying) signal, while high frequencies

encode attentional or selective state.

This mechanism requires that oscillations occur in the inhibitory neurons (both at

the selected cell, and in the previous cortical area), and that excitatory feed-forward

spikes are entrained to those oscillations, so that they spike at particular phases. A

complete examination of synchronization of different networks of neurons is outside of
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the scope of this investigation, but it is worth examining whether entrained spikes can

be produced in a reasonable model neuron. To that end, we performed simulations

with a single compartment pyramidal cell to demonstrate the feasability of generating

phase-locked spike times. (N.B. - the output spike trains of the multi-compartmental

model in this Chapter are also strongly phase locked, providing additional assurances

that phase locking in the presence of inhibitory oscillation is reasonable).

In a single compartment neuron, adding an oscillation to a time-varying input pro-

duces phase-locked output spikes (Figure 5.15). A single-compartment model neuron

after Golomb and Amitai (1997) was injected with a signal created by superposing a

time varying signal (scaled, filtered Gaussian “frozen” noise) and a 40 Hz sine-wave

oscillation (the oscillation is substantially less effective at driving spikes in the Golomb

model, and so has a standard deviation of roughly 7 times that of the frozen noise in

order to produce a similar number of spikes) (Figure 5.15A). The superposition was

adjusted so that the output firing rate was approximately constant for all drives. This

resulted in a larger standard deviation as the oscillation became the dominant com-

ponent of the input, since the frozen noise was more effective at eliciting spikes from

the model. The current was injected along with noise sampled from a Gaussian distri-

bution with standard deviation 10 µA sampled at 40 kHz, that is, at each step of the

simulation.

The degree of phase locking can be adjusted by changing the relative weight of the

oscillation and the signal in the inputs. The results are displayed in two different ways

– the first is a standard rastergram (Figure 5.15B), where each group of horizontal line-

delimited trials is aligned with the current that produced it in Figure 5.15A. Since it

is difficult to see the degree to which spikes are phase-locked in Figure 5.15B, a second

view of the same data is provided in Figure 5.15C. These “phasograms” show all the

spikes in response to a given input (from all trials). Distance of a spike from the origin
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Figure 5.15: Phase-locked spike trains can retain temporal information lower than at
γ frequency. A Golomb model neuron (Golomb and Amitai, 1997) was driven with a
series of current injections made up of a super-position of a frozen-noise stimulus and
an oscillation (A). The superposition was gradually adjusted between pure oscillation
and pure signal, and the output spike times were recorded (B). (C) Phasograms, in
which the angle around the origin represents the γ phase of a spike and distance from
the origin indicates spike time relative to the start of each trial. The output spike
trains are shown, proceeding left-to-right and top-to-bottom. Intermediate responses
show strong phase locking (jitter ∼ 3ms around a fixed phase, and slower time-scale
firing structure reflective of the frozen noise input).
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indicates its absolute time (since the beginning of the trial), while its phase relative to

the gamma oscillation is plotted as the angle around the origin. The responses proceed

from left-to-right and from top-to-bottom, and from having an output rate reflecting the

signal’s variations, to being essentially completely oscillation locked. Around the 5th

or 6th current injection, the neuron’s output spikes are strong locked to the oscillation

(standard deviation around the peak phase of about 3 ms) but spiking activity also

reflects the temporal structure of the input at timescales larger than the γ-range. This

indicates that it is feasible to drive a neuron in such a way as to both lock the spikes

to an ongoing oscillation while preserving temporal modulations in the input.

Although this establishes the feasibility of producing phase-locked inputs with “real”

neurons, it is convenient to be able to “dial up” phase-locking of any particular strength

in a predictable and simple way. In this Chapter, this is accomplished by taking a spike

train and visiting each spike, moving it to the nearest phase to which spikes are to be

locked, and then adding a random Gaussian jitter. The standard deviation of the

Gaussian determines the strength of the phase-locking (see the detailed explanation

given in Section 5.2.3).

How well can this mechanism select between two different time-varying signals arriv-

ing into the neuron at one time? Simulations were performed in which two time-varying

signals were transformed into excitatory spike times and used to trigger synapses in the

model. Each signal was locked either to the phase most-likely to produce output firing

(selected) or the phase least-likely to produce output firing (inhibited). These phases

were chosen by examining the firing rates in the constant firing rate, single signal case.

The correct phases cannot be chosen only by knowing the shape of the inhibitory oscilla-

tion, presumably because the dynamics of the synapses and membrane make predicting

the phase which minimized the effect of inhibition difficult. The output firing was cal-

culated and then compared to the input signals to quantify the degree of selection.
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Because the performance of this mechanisms is expected to depend on the temporal

character of the input signals, simulations were run on time varying signals with dis-

tinct timescales, from 250 ms all the way to 10 ms (where the method is expected to

fail, since this is below the γ-period of 25 ms). The results are shown in Figures 5.16 -

5.20.

In each figure except for Figure 5.20, similar simulations were performed and an-

alyzed. A pair of stimuli (S1 and S2) were generated with selected characteristic

timescales. A timescale for variation was chosen between 250 and 10 ms, and then

time-varying firing rates were generated by sampling uniformly from integers between

1 and 25 Hz. For instance, for a 25 ms time scale, a stimulus might consist of (in part),

four 25 ms blocks with firing rates 1, 23, 13 and 25 Hz. With a large block-width,

the time scale of the signal is slow, and with a small block-width, the signal varies

very quickly. For any given model run, both S1 and S2 had the same block-width to

facilitate comparison.

Effectiveness of selection was measured by comparing the output firing rate with

the input firing rates for both S1 and S2 while selecting either S1 or S2. Correlation

between S1 or S2 and the output was calculated using a multiple linear regression

using least squares (Matlab function regress (Matlab, 2009)). Such an analysis takes

N components and one signal which is hypothesized to be a sum of the components

and estimates the coefficients needed on each component to sum to the output. In this

case, S1 and S2 are our components hypothesized to contribute to the output firing

rate in a linear way. If selection were perfect, and we were selecting S1, for instance,

then the coefficient between S1 and the output firing rate would be one (neglecting

differences in total firing rate and offset) and the coefficient for S2 would be zero. The

hypothesis underlying these simulations is that selection between S1 and S2 will be

better the higher above the γ period the time scale of the stimulus is, and then selection
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Figure 5.16: Summary of selection by oscillation with the signal varying on a 250 ms
timescale. From top to bottom: (A), scatter plot of incoming firing rates (S1 and S2)
versus outgoing firing rate selecting either S1 (left, light points) or S2 (right, dark
points). Unexplained standard deviation is indicated by colored bars around each set
of points; (B), linear regression coefficients and confidence intervals relating S1 and S2
to the output firing rate while selecting S1 (left pair) and selecting S2 (right pair); (C),
input (dotted lines) and output (solid lines) firing rates plotted together for comparison.
The top panel shows the output selecting S1 with S1, and the bottom panel shows the
same for S2.
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Figure 5.17: Same as Figure 5.16 except for a signal with a timescale of 100 ms.
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Figure 5.18: Same as Figure 5.16 except for a signal with a timescale of 25 ms.
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Figure 5.19: Same as Figure 5.16 except for a signal with a timescale of 10 ms. When
the stimulus varies at a time-scale faster than a γ period, firing rate changes associated
with the oscillation obscure the selection.
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Figure 5.20: Same as Figure 5.16 except with a timescale of 10 ms. In order to deter-
mined whether variations in the input slower than the γ range were still selected in the
presence of faster changes, the stimulus and the output were filtered with a window of
approximately 30 ms (see text). Features with longer timescales in the input appear in
the output.
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will rapidly deteriorate for variations on faster timescales. This prediction is largely

born out in Figures 5.16 - 5.20.

In Figure 5.16A scatter plots are shown for two cases. To the left the firing rates

during selection of S1 are plotted in gray dots as a function of the S1 value which

produced them. Both the input and output firing rates have been normalized so that

their values are between zero and one. The gray points lie near the y = x line, indicating

a good correlation between S1 and the output while selecting S1. Points during the

selection of S2 are plotted in the same panel against S1. These points evidence less

correlation between input and S1, showing that when S2 is selected, the output is not

strongly locked to S1. In the panel in Figure 5.16A on the right, the same data are

plotted against S2 instead of S1. The same color coding is in effect, showing that when

S2 is selected, the output is correlated with S2 and when S1 is not selected, the output

is not correlated with S2. Figure 5.16B summarizes the data in 5.16A by showing the

regression coefficients between S1 (left panel) and the output selecting S1 (right bar)

and the output selecting S2 (left bar). The right panel shows the regression coefficients

between S2 and the output selecting S1 (right bar) and S2 (left bar). For illustrative

purposes the firing rates and input are shown (unnormalized) in Figure 5.16C. The case

selecting S1 is shown in the top panel, with the dotted line representing the incoming

S1 firing rate, and the solid line representing the output rate. In the bottom panel, S2

and the output are shown. For all data shown in this figure, both S1 and S2 are being

received by the neuron. Only the arrival time phase of each changes during selection.

Despite the fact that changes on the scale of 10 ms are not selectable by this tech-

nique, slower changes “on top” of a 10 ms signal are still selected by this method,

as evidenced in Figure 5.21. In this figure, the input and output of the model were

compared after being filtered to remove components at frequencies in the γ range and

higher (Matlab filter function, with B = [1 1 1 1] and A = 4, applied twice, once
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forward, and once backward. Since the data has a time resolution of ten ms, this

amounts to a filter width of about 30 ms). After filtering, both the shape of the input

and output curves and the regression coefficients show selection comparable to slower

varying signals. In other words, although selection fails for signals which vary quickly,

longer time scale features of the signal are selected and appear in the output. This

constitutes a “graceful failure” of the method in the presence of quickly changing firing

rates.

Figure 5.21: Selection degrades for time scales above that of the γ oscillation. On
the x-axis is the characteristic time scale of a time varying stimulus. On the y-axis,
the “selection index” (see Text), reflecting the degree to which temporal selection ef-
fectively filters incoming stimuli, is plotted, along with the “confidence range” (larger
corresponds to less confidence) of this measure, both as a gray area around the score
and as its own line (dotted) for comparison. A vertical dotted line indicates the γ
period. Stimulus selection fails when the time scale of the input becomes faster than γ
(indicated where the solid and dotted lines cross, around 20 ms) The point marked with
a star shows the selection index for a 10 ms signal when the comparison between input
and output is made after filtering (filter width ≈ 30 ms), showing that correlations on
time scales above that of the γ oscillation are preserved.
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The results are summarized in Figure 5.21. A “selection index” was devised to

measure the quality of selection for both S1 and S2 at each of the five time scales

examined above. Each linear regression produces a coefficient for S1 and S2 as well as

confidence intervals around such coefficients. For time scales for which selection works

effectively, we expect several things to be true about these coefficients. When selecting

S1 (S2), the difference between the S1 (S2) coefficient and the S2 (S1) coefficient

should be large and positive and the confidence interval around each coefficient should

be small. Therefore a selection index can be defined as:

S =
(CS1

S1 − CS1
S2) + (CS2

S2 − CS2
S1)

2
,

and a “general range” as:

C =
CIS1

S1 + CIS2
S1 + CIS1

S2 + CIS2
S2

4
,

where Cy
x indicates the coefficient weight for stimulus x while selecting y, and CIy

x is

the magnitude of the confidence interval around that coefficient. When the “selection

index” becomes approximately equal to the “confidence range”, then it is difficult to

determine which, if either, of the signals, is dominating the output of the model. In

other words, the model is no longer strongly selective.

In Figure 5.21, the “selection index” is plotted along with the “confidence range” for

each of the time scales displayed in this Section. Selection is good for values larger than

the γ period, but falls off precipitously for smaller time scales, with the intersection

between the selection and the confidence measure happening at around 20 ms.

While selection fails at time scales of 10 ms, slower variations are observable in
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Figure 5.20 and the resulting selection index is plotted as the single star at 10 ms in

Figure 5.21.

Taken together, these results show that selection by phase-locking to an inhibitory

oscillation can feasibly select stimuli with bio-physically plausible time scales of varia-

tion.
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Chapter 6

Discussion and Conclusion

6.1 Overview of Results

I present results in two related areas. In the first, the analysis of neural responses to

repeated, time varying signals is examined. In Chapter 3 I present a novel combination

of algorithms and heuristics which reproducibly find regions of elevated firing separated

by regions of relative quiescence called events, in this kind of spike train data. The

presence of events in spike trains was originally described by Mainen and Sejnowski

(1995), wherein the trial-averaged firing rate and a threshold was used to determine

where to demark events in time.

The results presented here improve upon the results reported in Mainen and Se-

jnowski (1995) in that they can discover events which overlap in time, but exist in

separate spike patterns. Information about correlations between events is also pre-

served by these methods. An important new result presented here is that the events

produced in response to a time varying stimulus can be correlated with one another in

such a way that, on a given trial, only a particular subset of events will occur. This

result was predicted by (Tiesinga and Toups, 2005) based on the approximately linear

nature of the subthreshold membrane potential dynamics together with the nonlinearity



of the spike generating mechanism. These methods not only discover the boundaries of

events, but also the spike patterns which produce correlations in events. The presence

of events impacts the estimation of the precision and reliability of neural responses, as

well as the ability of a downstream neuron to “decode” the structure and amplitude of

an incoming signal, as described in detail below. The methods of finding events and

spike patterns also provide new insight into the relationship between spike train clus-

tering and the time scale used for spike train metric space calculations. These results

have implications for neural coding and represent a set of useful tools and heuristics

which will facilitate future research by allowing more accurate statistical models of

single neuron and ensemble activity.

I also present an analysis of in vitro spike trains consistent with the concept of

sparse representation of time varying signals, such as those reported in Jadhav et al.

(2009).

In the second area, I examine two methods for producing stimulus selection at the

level of a single cortical pyramidal neuron when each stimulus varies in time.

This investigation is motivated by the fact that attention is necessary at the level of

a single V4 neuron, and it must operate on visual signals which are rapidly varying in

time. Because cortical neurons in V4 and higher visual cortical areas can have receptive

fields large enough to include multiple stimuli, the brain may require a mechanism to

enhance the response of the neuron to inputs representing a subset of the receptive field

in order to implement spatial attention.

I present an analysis of two possible mechanisms of stimulus selection. In the first,

the existence of clustering of synapses into sub-domains (motivated by, for instance,

Petreanu et al. (2009)) of the dendrites is examined, and I find that, although there are

differences in the ability of inhibition to modulate firing rate depending on whether it

is located in the same dendritic sub-region or another one, relative to excitation, that
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in the presence of multiple time varying signals, there is no significant difference in

the selection based on synaptic location. I also present simulations and an analysis of

using phase locking of feed-forward, excitatory “signal” spikes to specific phases of an

ongoing, inhibitory γ oscillation. In this case, statistically significant stimulus selection

was achieved for stimuli which varied more slowly than the γ period (25 ms) and

when both stimuli and the inhibition had strong phase locking (jitter less than 3 ms).

These results make specific predictions about the phase locking and phase relationships

of inhibition and feed-forward excitation. This method of stimulus selection predicts

that the inputs to a neuron comprised of selected and unselected stimuli will differ

only in their phase relative to the local γ - they both require strong phase locking

in order to accomplish selection. Because the phase range which results in significant

attenuation of the feed-forward signal is relatively small, amounting to around 30◦ (see

Figure 5.14), these simulations predict that unselected stimulus components may be

even more strongly tuned to γ than selected components, which can be located at

a larger range of phases. Both of these predictions should be re-evaluated in future

network simulations.

6.2 Finding Events and Spike Patterns

6.2.1 Previous Studies of Events and Spike Patterns

Mainen and Sejnowski (1995) re-introduced the issue of spike time precision in neu-

roscience. In their study of pyramidal cells in vitro, a single, time varying “frozen

noise” type current was repeatedly injected into a neuron and the resulting spikes were

recorded. The resulting spike trains had repeatable spike times, with very low jitter, in

contrast to the spikes produced to a constant current injection. Because the spike times

occurred at roughly the same time on each trial, they could be correlated with aspects
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of the stimulus. Additionally, spikes could be conceptualized as belonging to “events,”

roughly corresponding to all spikes from all trials which are produced in response to

the same component of the stimulus, and manifesting themselves as regions of elevated

firing surrounded by regions of lower firing rate. In the original paper, events were

detected and characterized using a firing rate threshold. Hence, continuous regions of

time during which the firing rate exceeded a set value were counted as a single event.

The study of spike patterns in this kind of data was initiated by (Fellous et al.,

2004), which combined the use of a spike train metric presented by Schreiber et al.

(2003) with a fuzzy-c-means clustering to reveal that neural responses to repeated

current injection could be characterized in terms of spike patterns. Other studies

document a variety of alternative ways to cluster or sort spike trains by temporal

structure (Schreiber et al., 2004; Victor and Purpura, 1996; Lindsey and Gerstein,

2006; Van Rossum, 2001). The approach described here is an extension of the preceding

results, but is novel in several ways. First, the results described here go beyond merely

finding spike patterns: spike patterns are discovered as one part of a multistep system

meant to more accurately characterize neural responses. Unlike the Fellous et al. (2004)

results, we use the Victor-Purpura spike train metric rather than the metric described

in Schreiber et al. (2003) because of the ease with which the algorithm’s q parameter is

interpreted, the computational efficiency of the measure, which does not quantize time

as part of the calculation, and because the measure has a simple extension described

by Aronov (2003), allowing for a straightforward generalization to multineuron spike

patterns. The finding of events within individual spike patterns, and the statistical

procedure for merging events across patterns, constitute a new contribution to the

study of spike patterns in neural data.

The entire method constitutes a way of discovering a statistical model of the re-

sponse which includes trial to trial correlations. This information is lost when averaging
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over all trials.

An important new result when compared to the original Mainen and Sejnowski

method is that events from different spike patterns may overlap in the spike time

histogram, and will therefore appear in a pattern-agnostic analysis of neuronal data as

a single, low precision event (see Figure 3.1 for an example). The implications of this

result are discussed in Subsection 6.3.

6.2.2 Implications of the Current Study for Metric Space Anal-

ysis

An important result presented here is in the area of finding the most meaningful met-

ric space parameter q for the Victor-Purpura metric. Previous studies of spike train

clustering and metric space analysis have suggested that the parameter q should be

chosen to reflect time scales in spike trains of interest (Fellous et al., 2004; Victor and

Purpura, 1996). Choosing this timescale is difficult in our case because data sets can

have a variety of inter-event intervals and jitters (the two time scale categories of in-

terest). Additionally, we report that events from different spike patterns can overlap in

the full data set, implying that there is an overlap between the inter-event and event

jitter timescales. As a consequence, I pursued a more heuristic approach for selecting

the spike train metric parameter based on maximizing the correctness of clustering of

known data sets. I present results suggesting that the optimal timescale parameter is

only indirectly related to the jitter and event time scales, and that the parameter value

which maximizes the entropy of the resulting spike train distances is a more principled

choice of q, at least when the final goal is finding spike patterns.

Although we work with the Victor-Purpura spike train metric in this dissertation,

this insight should generalize to any measure which has a tunable sensitivity to exact

spike timing, as is the case in the “Schrieber” and “Van Rossum” spike train measures
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(Schreiber et al., 2004; Van Rossum, 2001), and may be indirectly applicable to more

complex methods like that of Lindsey and Gerstein (2006), which use spike correlated

changes in the effective “mass” of a spike train and a dynamical simulation to calculate

spike train similarity.

6.2.3 Reproducibility, Heuristics and Limitations of Presented

Method

I present a novel method for finding events and spike trains in neural data. Although

this problem has been examined before, I present a complete analysis method with a

statistical examination of parameter choices for each step. Using these algorithms, spike

train clustering can be standardized and repeatable across labs, improving collaboration

and verification of results. In addition to specifying a procedure for characterizing the

spike patterns and events in spike train data, I provide heuristics for each step of the

analysis which provide good results for data with more than 20 trials and where events

are separated by larger gaps than their jitters. The only step where the algorithms are

not simply deterministic is the fuzzy-c-means, where cluster membership is initialized

with random values. If these random initial values are provided, the analysis presented

here is completely reproducible.

Finding q, the metric timing parameter

The selection of the Victor-Purpura metric space timing parameter is discussed above

in Subsection 6.2.2, but, in summary, I show that the choice of the parameter q is most

effective at finding the correct known clustering when the entropy in the distances

between spike trains is maximal. We also present a more precise but less reliable

heuristic for q, which examines peaks in the change in the coefficient of variation of the

spike train distances, with the benefit that it can be calculated without binning the
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spike train distances.

Choosing the number of Clusters, Nc

It is difficult to choose the correct number of clusters in any clustering problem where

it is not known in advance. The “Gap Statistic,” which compares clusterings of real

data to clusterings of surrogate data created in such a way as to be cluster free, is

used in this dissertation (Tibshirani et al., 2001). Whether this measure is appropriate

can be addressed in several ways. Heuristically, we address this question by comparing

calculated clusterings (and numbers of clusters) to many ensemble data sets which have

a known cluster structure (see Figure 3.6). Although this demonstrates that the Gap

Statistic produces good estimates of the actual number of clusters for the types of data

we examine here, it does not establish the significance of spike train clusters in real

data. We address this weakness by creating a precise definition of a spike pattern:

a subset of trials from a data set for which events are uncorrelated. This implies a

statistical test on events which can verify the presence of spike patterns (given the

events in a set) and also one for testing whether a particular trial cluster corresponds

to a real spike pattern or not. See Figure 3.9.

In a broader sense the question of what any spike pattern means depends on the

nature of the neural system in which it is observed. From this perspective, spike train

clustering, as presented here, is useful for retaining information in statistical models of

neural activity which may be correlated with some experimentally observable quantity.

These results can be thought of as a means of retaining more information about spike

train responses - the question of whether that information is meaningful in terms of a

particular neural system is left to be determined by future experiments and analysis.
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Finding and Merging Events

We find that using an ISI threshold equal to a large fraction of the largest interspike

interval in a spike train cluster produces a good estimate of the events in that spike

train cluster. This simple choice of ISI threshold is only possible because overlapping

events have been separated by the clustering step (see Figure 3.1). When events overlap

in time between different spike patterns, there is no single interspike interval threshold

which is shorter than the interevent-distances but longer than all interspike distances.

When spike patterns are isolated, the refractory period of the neuron ensures that

within a single pattern, such a value can be found.

However, because a single event may occur in multiple spike patterns, I present an

ROC analysis and heuristic for merging events across spike patterns. I present that

using an sROC value of .5 as a threshold for merging nearby events produces correct

event assignments for artificial data sets with specified events.

The underlying reason for these observations is that, within a given spike pattern,

the refractory period of the neuron assures that events will not be arbitrarily close in

time. The insight provided from this study is that the minimum interspike interval

expected from this observation does not generalize to the entire data set - unless care

is taken to examine the trials closely, events will appear to be arbitrarily close in

time, making naive characterization of events difficult. For this kind of data, a full

characterization of event precision requires finding and isolating the spike patterns.

As in the case of the number of meaningful clusters in the data set, the question of

whether particular events are really distinct or identical is impossible to objectively say

in the abstract. These methods represent a way of capturing neural variability at a finer

grain than the spike time histograms. Only experimental work and insight into specific

neural systems can answer the question of whether a particular conceptualization of

spike train data is meaningful.
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6.3 Coding Implications of Spike Patterns

This dissertation examines one impact of spike patterns and event reliability on the

question of neural coding in Chapter 4. The approach presented sidesteps the question

of whether information is represented in the interspike intervals of the spike trains in

favor of examining the impact of spike patterns and the associated event unreliability

on the ability of a downstream neuron to decode features of the stimulus based on

the activity of an ensemble of neurons which may or may not fire in different spike

patterns. Figure 4.7 shows the result of driving a highly idealized neuron with two

different groups of spikes, one representing a very synchronous population of neurons,

the other representing one which is less synchronous, and sampling from a broader set

of spike patterns. Using a spike triggered average on the latter data produces a better

estimate of the input. This is a kind of stochastic resonance (see Rizzo (1997) for a

short review of the concept). The primary novelty in the result presented here is that

noise induces different kinds of changes in the variability of the output spike times.

Our analysis of data from pyramidal cells in slices of rat prefrontal cortex shows that

responses can have variability in spike pattern and concomitant high unreliability while,

within one spike pattern, spikes continue to be precise to within a few milliseconds. One

way of viewing these results is that, by quantifying the different kinds of variabilities in

neural data separately (jitter, reliability and spike patterns), we are able to show that

a neuron can be unreliable without becoming imprecise. Methods which average over

trials to estimate variability mix up these two kinds of variability, and therefore obscure

the potential of encoding time varying signals with precise, but unreliable, spike trains.

Spike patterns can be thought of as sequences of spikes with specific interspike

intervals, so they can at least theoretically be thought of as temporally distinct symbols.

The view I present in this dissertation is that spike patterns are merely different samples

representing pieces of the same underlying temporal structure, so the implications for
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temporal coding, in which distinct patterns would encode different states, are not clear.

Recent results presented by Riehle et al. (1997) show some evidence for correlation

based coding, where the transient synchrony between neurons in a population reflects

something about the inner state of the brain. Although it is difficult to compare

my results to theirs, there is some tension between the mechanism I propose - that

unreliability lowers synchronous firing across a population to enhance coding - and

theirs - where increased synchrony is actually used to represent the internal state of

some aspect of the system. Because I hypothesize that unreliability is useful, but

binding by synchrony would increase reliability, there is a trade off between synchrony

of a neural population and the ability to encode information in synchrony (see Tiesinga

and Jose (2000)). Without further modeling and experimentation on spike patterns,

however, it is difficult to predict if they make a difference in neural systems in practice.

In Chapter 4, I report that in vitro neurons driven with a time varying current in-

jection at a variety of amplitudes encode the structure of that injection most robustly

when medium amplitudes are considered, and the reliability of individual neurons is

small or moderate. This coincides with their being a large number of spike patterns.

Finding the spike patterns in such a response shows that the neuron responds in many

unreliable but temporally precise events, suggesting that if a population of neurons is

to encode the structure of a time varying stimulus, then the reliability of each neuron

in the ensemble should be low. When the reliability of all the neurons is high, then

all the neurons respond to the same stimulus features, and, due to the presence of a

refractory period, miss similar features. When reliabilities are low, different sets of

neurons respond to different features of the stimulus, allowing the ensemble to reflect

more features. These results are consistent with a recent experimental study conducted

by Jadhav et al. (2009), which reported that neurons sensitive to the rapid accelera-

tions produced by whisker slips used a low reliability, high precision encoding scheme
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where individual neurons had high precision responses on only a few trials. This study

hypothesizes that if such whisker cells were driven with repeated stimuli rather than

random slips, results similar to the ones presented here would be found.

6.4 Future Spike Patterns Research

Future research in this area could progress in two directions, both of which focus on

the challenges of analyzing and understanding ensembles of neurons.

Although we chose the Victor-Purpura metric for the simplicity of choosing the

parameter q, an additional benefit of the measure is a simple generalization of the

method which allows for the calculation of distances between ensembles of neurons with

tunable importance given to the specific identity of each cell. Multi-electrode recordings

and spike sorting, pioneered by Georgopoulos et al. (1988), and two photon microscopy

(Denk et al., 1990) are now allowing simultaneous recording from a large number of

neurons. Future research should examine whether patterns of activity analogous to

those described here occur in networks of neurons, and whether the identity of neurons

in the network is important. Because the only difference between single unit and

multiunit data in terms of the analysis method presented here is the metric space step,

it should be easy to adapt the clustering steps to multiunit data. The question of how an

event should be defined across an ensemble of neurons and over repeated trials is more

complex, especially if there are predictable but non trivial changes in which neurons

participate, on a given trial, in the representation of a single event. For instance, if

the selection of neurons from the ensemble which spike in a given event changes as a

function of time due to some ongoing process, like synaptic adaptation, so that spikes

belonging to a particular event appear at the same time and with the same reliability

on all trials, but in different subsets of the population.

A more simple direction for future research lies in the association between single
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unit recordings over many trials and the behavior of ensembles. I present a single,

highly idealized downstream neuron responding to ensembles of neurons with different

reliabilities and show that the reliability of individual events, and therefore spike pat-

terns, has an effect on the ability of the neuron to encode the shape of a time varying

signal. This question should be examined in more realistic systems. A simple experi-

ment I hope to carry out in the future will be the construction of models of ensemble

activty based on single neuron recordings. Once the models of ensemble activity are

built, they can be used to generate conductance waveforms which can then be injected

into another neuron in vitro, varying the degree of “pattern synchrony” and analyzing

the output spike trains both in terms of spike patterns and in terms of reconstruction

of the original, time varying input signal. This experiment would reveal important in-

formation about the capabilities of spike patterns to enhance representation of stimuli

in multi-layered networks.

6.5 Stimulus Selection at the Single Neuron Level

The ability to attend - that is, to direct cognitive resources to processing only parts

of the sensory input - is crucial to behaving complex organisms, which receive more

information from their sensory systems than could possibly be consciously processed

(Desimone and Duncan, 1995). Additionally, deficits in attention constitute or accom-

pany a large number of mental illnesses from attention deficit disorder to schizophrenia

(Siever and Davis, 2004; Vale, 2008; Hutchinson and Mathias, 2007; Austin et al.,

2001). Consequently, understanding the mechanisms of attention is an important goal

of neuroscience with many implications for understanding and treating mental illnesses.

Current conceptual models of attention are based on the idea of biasing competition

between cortical columns (Reynolds and Desimone, 2003; Ogawa and Komatsu, 2004).

I present two methods for modulating the activity of a single cortical neuron which may
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be relevant to biased competition models, but also function in the absence of explicit

competition.

I find that in a model of a layer 2/3 pyramidal cell with active dendrites originally

described in Traub et al. (2003), the exact relationship between the locations of in-

hibitory and excitatory synapses does not significantly impact the ability of a neuron

to select between two stimuli by unbalancing the ratio of inhibition and excitation asso-

ciated with one signal. In this case, stimulus selection is possible, but does not depend

on how synapses are distributed in the dendrites.

I also examine the ability of a neuron to select between two signals in the presence of

an ongoing γ (40 Hz) oscillation when each signal is represented by excitatory activity

with spike times locked to specific phases. In this case, I show there is significant

stimulus selection when there is strong phase locking (≈ 3 ms) and regular oscillatory

activity at 40 Hz.

6.5.1 Stimulus Selection with Synaptic Clustering

It is becoming technically feasible to map the detailed pattern of synaptic enervation in

the dendrites of pyramidal cells (Petreanu et al., 2009), and this has revealed that there

is clustering of synapses from presynaptic neurons onto sub-domains of the dendrites.

The question examined in this thesis is whether the clustering of synapses can be

utilized to produce or enhance stimulus selection for rapidly varying signals in a model

of a layer 2/3 pyramidal neuron (Traub et al., 2003).

This dissertation examines three variations on the theme of stimulus selection ex-

ploiting the location of synapses. The simplest is the colocation case, where inhibitory

and excitatory neurons driven by the same signal are located in the same dendritic

sub-domain. In the baseline case, inhibition and excitation are balanced so that the

neuron does not produce any spikes, and to “select” a stimulus, the inhibitory firing
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rate is reduced, allowing the neuron to fire. In the second case, inhibition and exci-

tation following a given signal are contralocated - that is, excitation is located on one

dendritic sub-branch, while inhibition is located on another. In the presence of two

signals, inhibition following signal 2, for instance, will be located with the excitatory

activity representing signal 1 and vice versa. I finally examined the case where there is

no specificity at all in either inhibitory or excitatory synaptic activity. Although I do

present a significant difference in the ability of inhibition to modulate the output firing

rate of a neuron depending on whether it is colocated or contralocated with excitation

(see Figure 5.6), these results depend on the inhibited branch being unexcited, and only

occur with numerical significance when averaged over long time intervals. When driven

simultaneously by two signals, there is not a statistically significant difference between

the selection in the colocated or contralocated cases. These results indicate that while

receiving time varying signals and background firing, the Traub model neuron is too

electronically compact for synaptic location to be a significant factor in selecting signals

varying on a timescale of 250 ms or below.

Comparison to Previous Simulation Results and Limitations of This Study

The implications of synaptic clustering in dendritic sub-domains of the dendrites are

not well characterized. Archie and Mel (2000) examined the question in a similar

model neuron for constant firing rate stimuli and found that using a contralaterally

arranged set of synaptic inputs, modulations were observed that were consistent with

experimental studies of firing rate modulations and attention. The results of this present

study are consistent with those reported in Archie and Mel (2000), with the novel

addition that stimulus selection is accomplished for time varying signals. Alternative

synaptic layout strategies were not examined in the Archie and Mel (2000) study. This

dissertation also contributes the novel result that, at least for time varying signals, the
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layout of synapses in dendritic subdomains is unimportant for selection, which depends

only on maintaining or selectively perturbing the balance of inhibition and excitation.

The small effect of the location of synapses on the response properties of the neuron

during stimulation by multiple sources of input raises the question of why clustering of

synapses in the dendrites is observed at all (Petreanu et al., 2009). One answer may

be that the model neuron used in this dissertation, originally described by Traub et al.

(2003), is not appropriate for the examination of this question. The Traub model was

constructed to reproduce fast and slow dendritic Ca2+ spikes, with the goal of studying

experimentally observed bursting behavior. Neither behavior is examined explicitly in

this dissertation. The choice of the Traub model was motivated by a desire to use a

biophysically motivated Layer 2/3 pyramidal cell model. Nevertheless, there are two

limitations to this model. First, the nature and distribution of ion channels in the

dendrites of Layer 2/3 pyramidal neurons is not well understood. In pyramidal cells

in L5 or CA1 where the distribution of channels is better studied, the character of the

dendrites varies between cell types (Gasparini and Magee, 2006; Schaefer et al., 2007;

Migliore et al., 1995; Prescott and De Koninck, 2003)), suggesting that the results

from other cell types cannot be easily generalized to Layer 2/3 cells. Secondly, the

morphology of the basal dendrites is highly idealized in the Traub model. Either of these

limitations may restrict the usefulness of the results reported here. Future research on

the subject of selection by modulation of neural populations with selective synaptic

locations should examine the question of dendritic electrophysiology and morphology

more carefully.

Future Work

Future work in this area would be advanced by examining the model of the Layer 2/3

pyramidal cell and by examining the same question in the context of other pyramidal
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cell varieties. Although there are other mechanisms which explain the discrepancy

between the results reported for time varying signals, and the ability of contralocated

inhibition to lower the firing rate of a neuron more effectively than colocated inhibition,

one factor may be the relatively high variability of the output spike trains in these

results. Specifically, when the input frequency varies rapidly in time, the firing rate

variability in a short time interval may be large enough to obscure differences in rate

which are obvious at longer time scales. As a consequence, one possible mechanism

which may illuminate differences between synaptic layout strategies is the addition of

an oscillatory component to some or all of the inhibitory inputs arriving at the neuron.

Although this would introduce a time scale limit on the possible frequency content of

the selected stimuli similar to the one reported for oscillatory selection, it would also

reduce spike count variability by synchronizing spikes to the oscillation, which may

reveal significant differences in selection strategies. On a related note, a combination

of this method with oscillatory selection may reveal that the two combined produce

better selection than either mechanism in isolation.

6.5.2 Stimulus Selection with Inhibitory Oscillations

Much experimental evidence exists for a link between neural oscillations and attention

or stimulus selection (see Chapter 2) (Buzsaki and Draguhn, 2004). This study pursues

the idea that the brain dynamically adjusts the effective connection strengths between

groups of neurons by changing the relative phases of different groups of neurons (this

theory was proposed by Fries (2005) and tested in Womelsdorf et al. (2007), by cor-

relating the local field potential with multi-unit activity). This theory hypothesizes

that inhibitory interneurons prevent pyramidal cells from firing during certain phases

of their oscillation (in particular, those immediately after an inhibitory volley) while

allowing firing for other phases. To prevent two cortical areas from communicating
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without changing the local firing rates, the phases of the two areas are adjusted such

that spikes from the first area arrive in the second just as the peak of the inhibitory

oscillation has arrived, so that the second area is unable to respond. Positive selection

is also accomplished in a similar way, except the arrival phase is calibrated so that

excitation arrives at the low (rather than high) point of the inhibitory oscillation.

This dissertation examines selection by oscillatory firing in the context of a single

neuron receiving time varying signals. I report that stimulus selection can be accom-

plished for reasonable background firing rates when there is strong phase locking (jitter

on the order of ≈ 3 ms).

Previous Results, Limitations of this Study and Future Work

Selection by oscillation at the single neuron level has been examined before in the

constant firing rate case. In (Mishra et al., 2006) the relative phase between inhibitory

oscillations and excitatory inputs was varied to simulate the effects of attention for

constant firing rates, and the results were consistent with experimental examinations

of attention like those done in Reynolds et al. (1999). My study differs from previous

work primarily in the use of time varying, rather than constant firing rate, stimuli. The

results here indicate that attentional modulation by phase locking can be accomplished

even in the context of multiple, time varying signals with a large range of firing rates

(between 5 and 25 Hz). Since neural systems experience temporally varied stimuli

during natural behavior, these results represent an important validation of the theory

of attentional selection using inhibitory oscillations.

The selection demonstrated here is consistent with the case of attention being di-

rected into the receptive field of the neuron (see Figure 5.14) and Reynolds et al. (1999)

in that attention results in both higher firing rates and lower spike time jitter. When

no signals are selected in this model, all inputs are located at the phase least likely to
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produce spikes (around 300◦). It is at this phase that the firing rate is lowest and the

jitter is highest. However, the precision of the inputs is still very high - all inputs in our

models were phase locked with a jitter of only 3 ms, and for jitters larger than 4 ms,

selection was reduced or completely eliminated. Therefore, although selection works

in our model, when a neuron is not receiving any attended inputs, its output is very

imprecise (see Figure 5.14C). In other words, in the model presented here, attention

can lead to a substantial increase in precision. The effect of such imprecise spike times

on attentional selection in the next cortical area was not examined here, but should be

an aspect of future work.

An important aspect of attention is its effect on the firing rate of neuron which

is responding to both a preferred and non-preferred stimulus at the same time when

spatial or feature-based attention is directed to one of the attended stimuli. The results

presented here correspond to the case wherein two identical, preferred stimuli appear

at two different locations in the receptive field of the neuron, and where the phase

of the incoming spike is a means of representing spatial, rather than feature based

attention. An important result not reproduced here but reported in Reynolds and

Chelazzi (2004) is that feature based attention to a non-preferred stimulus when both

a preferred and non-preferred stimulus are present in a receptive field reduces the firing

rate of the neuron. Whether feature based and spatial attention are both subserved

by phase locking to the γ oscillation, and whether such a scheme can reproduce the

experimentally observed modulations in firing rate are important questions which need

to be addressed by future research.

Our modeling was done with very strong phase locking (3 ms) for excitation and

inhibition. In addition, phases did not drift as a function of time, and there were no

so-called “noise” spikes not involved in the oscillation. While a 3 ms phase locking

strength is not far out of the range of observed experimental phase locking to γ (Fries
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et al., 2008), the rapid decrease in selectivity for phase lockings larger than 3 ms implies

that the mechanism explored here is insufficiently robust to function in more realistic

or noisy settings. One possibility is that despite selection decreasing rapidly in the

single neuron case, ensembles of coupled neurons with similar preferences might have

better selective profiles because of recurrent connectivity, or that selection might still

be detectable in the activity of the ensemble by averaging. Generalizing these results

to networks of neurons will help answer these questions. Since these results do not

depend critically on the use of a compartmental model, studying them at the network

level with single compartment neurons may be sufficient.

6.6 Conclusions

We present several results based on the analysis of time varying data. First, methods for

finding and quantifying spike patterns are developed. These methods are then applied

to the problem of encoding the amplitude or offset of time varying signals, where we find

that regions in the response place where multiple response-types are possible encode

the amplitude or offset of a time varying signal with the greatest fidelity.

I also analyze simulations of two different strategies for selecting between time-

varying stimuli simultaneously driving a single neuron. Hypothesizing that clustering

of synaptic inputs in sub-domains of the dendritic arbor of pyramidal cells might be

evidence of selection by selective application of inhibition, we found that the input-

output relation for a pyramidal neuron is mostly determined by the total balance of

inhibition and excitation, and that the location specificity of inputs is generally a small

effect which does not significantly affect the selection of time-varying signals. Despite

this result, we report that locating inhibition on dendritic sub-branches which are not

being stimulated by excitation lowers the output firing more effectively over long time

periods than locating it on the same dendrite as excitation.
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Selection by phase-locking of excitatory input to an ongoing local inhibitory oscil-

lation was also examined. In contrast to location specific inhibition, phase locking of

excitatory inputs produced strong modulations in the effect of a time varying excitatory

drive to control the output firing rate of a neuron. However, precise phase locking was

necessary to achieve good modulation.

Taken together, these results and techniques represent a significant contribution to

the analysis of variability in neural systems and to the understanding of the roles of

spike timing and time varying signals in the neural code.
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